Davood Ghanbari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11188888/publications.pdf

Version: 2024-02-01

107 papers 4,437 citations

94433 37 h-index 63 g-index

107 all docs

107 docs citations

107 times ranked

4130 citing authors

#	Article	IF	CITATIONS
1	Simple synthesis of conductive poly aniline/cobalt ferrite magnetic nanocomposite: its radio waves absorption and photo catalyst ability. Journal of Cluster Science, 2022, 33, 1257-1266.	3.3	9
2	Embedded three spinel ferrite nanoparticles in PES-based nano filtration membranes with enhanced separation properties. Main Group Metal Chemistry, 2022, 45, 1-10.	1.6	8
3	(Co, Ag, Ni, Cd, Mn, Cr)-doped PbS photo-catalyst: sonochemical-assisted synthesis of magnetite nanocomposites applicable for elimination of toxic pollutants. Journal of Materials Science: Materials in Electronics, 2021, 32, 373-383.	2.2	3
4	lonic transport properties improvement of a new cation-exchange membrane containing functionalized CNT as a clean technology for refining of saline-liquids. Environmental Technology (United Kingdom), 2021, 42, 1236-1251.	2.2	1
5	Green sonochemistry assisted synthesis of hollow magnetic and photoluminescent MgFe ₂ O ₄ –carbon dot nanocomposite as a sensor for toxic Ni(<scp>ii</scp>), Cd(<scp>ii</scp>) and Hg(<scp>ii</scp>) ions and bacteria. RSC Advances, 2021, 11, 22805-22811.	3.6	19
6	Magnetic properties and kinetic roughening study of prepared polyaniline: lead ferrite, cobalt ferrite and nickel ferrite nanocomposites electrodeposited thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 14477-14493.	2.2	11
7	Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples. Applied Sciences (Switzerland), 2021, 11, 4846.	2.5	6
8	Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydrate Polymers, 2020, 229, 115428.	10.2	168
9	Investigation of magnetic, mechanical and flame retardant properties of polymeric nanocomposites: Green synthesis of MgFe2O4 by lime and orange extracts. Composites Part B: Engineering, 2019, 176, 107345.	12.0	74
10	A novel magnetic MgFe2O4–MgTiO3 perovskite nanocomposite: Rapid photo-degradation of toxic dyes under visible irradiation. Composites Part B: Engineering, 2019, 175, 107080.	12.0	89
11	Preparation of a new magnetic and photo-catalyst CoFe2O4–SrTiO3 perovskite nanocomposite for photo-degradation of toxic dyes under short time visible irradiation. Composites Part B: Engineering, 2019, 176, 107343.	12.0	71
12	Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. Journal of Molecular Structure, 2019, 1183, 324-330.	3.6	32
13	Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Composites Part B: Engineering, 2019, 161, 564-577.	12.0	164
14	A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax) Tj ETQq0 (0 orgBT /0	Overlock 10 Tf
15	Rapid photo-degradation of toxic dye pollutants: green synthesis of mono-disperse Fe3O4–CeO2 nanocomposites in the presence of lemon extract. Journal of Materials Science: Materials in Electronics, 2018, 29, 11065-11080.	2.2	40
16	Preparation of tin ferrite–tin oxide by hydrothermal, precipitation and auto-combustion: photo-catalyst and magnetic nanocomposites for degradation of toxic azo-dyes. Journal of Materials Science: Materials in Electronics, 2018, 29, 1766-1776.	2.2	22
17	Simple and green synthesis of CuFe2O4–CuO nanocomposite using some natural extracts: photo-degradation and magnetic study of nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 4689-4703.	2.2	23
18	Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 481-493.	3.9	217

#	Article	IF	CITATIONS
19	A Novel Sulfonated Poly Phenylene Oxide-Poly Vinylchloride/ZnO Cation-Exchange Membrane Applicable in Refining of Saline Liquids. Journal of Cluster Science, 2017, 28, 1489-1507.	3.3	10
20	Photocatalyst Al2O3–TiO2: preparation of poly vinyl alcohol based nanocomposite by ultrasonic waves. Journal of Materials Science: Materials in Electronics, 2017, 28, 8950-8959.	2.2	6
21	CaFe2O4–ZnO magnetic nanostructures: photo-degradation of toxic azo-dyes under UV irradiation. Journal of Materials Science: Materials in Electronics, 2017, 28, 12823-12838.	2.2	15
22	Magnetic and photo-catalyst BaFe12O19-ZnO: Hydrothermal preparation of barium ferrite nanoparticles and hexagonal zinc oxide nanostructures. Journal of Materials Science: Materials in Electronics, 2017, 28, 6607-6618.	2.2	13
23	Photo-catalyst Fe–Pt nanocomposite: mechanical preparation of iron nanoparticles and simple synthesis of platinum nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 9804-9812.	2.2	5
24	Facile synthesis of hexagonal strontium ferrite nanostructures and hard magnetic poly carbonate nanocomposite. Main Group Metal Chemistry, 2017, 40, .	1.6	3
25	Magnetic and Photo-catalyst CoFe2O4-CdS nanocomposites: Simple preparation of Ni, Co, Zn or Ag-doped CdS nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 5472-5484.	2.2	7
26	Green synthesis and characterization of magnetic and effective photocatalyst NiFe2O4–NiO nanocomposites. Journal of Materials Science: Materials in Electronics, 2017, 28, 17635-17646.	2.2	12
27	Preparation of hard magnetic BaFe12O19–TiO2 nanocomposites: applicable for photo-degradation of toxic pollutants. Journal of Materials Science: Materials in Electronics, 2017, 28, 13956-13969.	2.2	14
28	Photo-catalyst CoBixFe2â^'xO4â€"Bi2O3 nanocomposite: effect of bismuth substitution in magnetic properties of cobalt ferrite. Journal of Materials Science: Materials in Electronics, 2017, 28, 3083-3089.	2.2	3
29	Preparation and characterization of various morphologies of SrFe12O19 nano-structures: investigation of magnetization and coercivity. Journal of Materials Science: Materials in Electronics, 2017, 28, 1-9.	2.2	88
30	Green synthesis of magnetic and photo-catalyst PbFe12O19â^'PbS nanocomposites by lemon extract: nano-sphere PbFe12O19 and star-like PbS. Journal of Materials Science: Materials in Electronics, 2017, 28, 1101-1114.	2.2	14
31	Magnetic and photo-catalyst Fe3O4–Ag nanocomposite: green preparation of silver and magnetite nanoparticles by garlic extract. Journal of Materials Science: Materials in Electronics, 2017, 28, 2877-2886.	2.2	11
32	Photo-catalyst and magnetic nanocomposites: hydrothermal preparation of core–shell Fe3O4@PbS for photo-degradation of toxic dyes. Journal of Materials Science: Materials in Electronics, 2017, 28, 1577-1589.	2.2	17
33	Preparation of Polyvinyl Acetate (PVAc) and PVAc–Ag–Fe3O4 Composite Nanofibers by Electro-spinning Method. Journal of Cluster Science, 2016, 27, 1317-1333.	3.3	12
34	Lead hexa-ferrites and magnetic cellulose acetate nanocomposites: study of magnetization, coercivity and remanence. Journal of Materials Science: Materials in Electronics, 2016, 27, 7738-7749.	2.2	4
35	Pechini synthesis of Co2SiO4 magnetic nanoparticles and its application in photo-degradation of azo dyes. Journal of Molecular Liquids, 2016, 220, 223-231.	4.9	21
36	Photo-catalyst Fe3O4/TiO2 nanocomposites: green synthesis and investigation of magnetic nanoparticles coated on cotton. Journal of Materials Science: Materials in Electronics, 2016, 27, 8661-8669.	2.2	29

#	Article	IF	CITATIONS
37	Preparation of Ni(OH)2, NiO and NiFe2O4 nanoparticles: magnetic and photo-catalyst NiFe2O4–NiO nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 13338-13350.	2.2	15
38	Photo-degradation of Congored, acid brown and acid violet: photo catalyst and magnetic investigation of CuFe2O4–TiO2–Ag nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 11017-11033.	2.2	51
39	Photo-degradation of acid blue, black and brown: photo catalyst and magnetic investigation of CoFe2O4–SnO2 nanoparticles and nano composites. Journal of Materials Science: Materials in Electronics, 2016, 27, 12160-12173.	2.2	10
40	Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes. Scientific Reports, 2016, 6, 20060.	3.3	26
41	Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites. Scientific Reports, 2016, 6, 25231.	3.3	69
42	Photo-catalyst and magnetic investigation of BaFe12O19–ZnO nanoparticles and nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 11339-11352.	2.2	19
43	Photo catalyst CoFe2O4–CdS nanocomposites for degradation of toxic dyes: investigation of coercivity and magnetization. Journal of Materials Science: Materials in Electronics, 2016, 27, 8758-8770.	2.2	12
44	Photo-degradation of azo dyes: photo catalyst and magnetic investigation of CuFe2O4–TiO2 nanoparticles and nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 9962-9975.	2.2	43
45	SrFe12O19 ferrites and hard magnetic PVA nanocomposite: investigation of magnetization, coecivity and remanence. Journal of Materials Science: Materials in Electronics, 2016, 27, 4297-4306.	2.2	16
46	Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 4800-4809.	2.2	125
47	In situ and ex situ synthesis of poly(vinyl alcohol)–Fe3O4 nanocomposite flame retardants. Particuology, 2016, 26, 87-94.	3.6	21
48	Photo-degradation of azo-dyes by applicable magnetic zeolite Y–Silver–CoFe2O4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 5315-5323.	2.2	37
49	Microwave synthesis of CuO/NiO magnetic nanocomposites and its application in photo-degradation of methyl orange. Journal of Materials Science: Materials in Electronics, 2016, 27, 2718-2727.	2.2	41
50	Sugar and Surfactant-Assisted Synthesis of Mg(OH)2 Nano-flower and PVA Nanocomposites. Journal of Cluster Science, 2016, 27, 299-314.	3.3	11
51	Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 1244-1253.	2.2	295
52	Sonochemical Synthesis of Spherical Silica Nanoparticles and Polymeric Nanocomposites. Journal of Cluster Science, 2016, 27, 39-53.	3.3	21
53	Synthesis and Characterization of Al(OH)3, Al2O3 Nanoparticles and Polymeric Nanocomposites. Journal of Cluster Science, 2016, 27, 25-38.	3.3	57
54	Photo-catalyst tin dioxide: synthesis and characterization different morphologies of SnO2 nanostructures and nanocomposites. Journal of Materials Science: Materials in Electronics, 2015, 26, 6970-6978.	2.2	38

#	Article	IF	CITATIONS
55	Synthesis of Titanium Dioxide Nanoparticlesand Investigation of Its Photocatalytic Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1092-1096.	0.6	4
56	Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite. Korean Journal of Chemical Engineering, 2015, 32, 903-910.	2.7	18
57	Photo-catalyst thallium sulfide: synthesis and optical characterization different morphologies of Tl2S nanostructures. Journal of Materials Science: Materials in Electronics, 2015, 26, 8798-8806.	2.2	15
58	Electro-spinning of cellulose acetate nanofibers: microwave synthesize of calcium ferrite nanoparticles and CA–Ag–CaFe2O4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2015, 26, 8358-8366.	2.2	19
59	Photo-degradation of organic dyes: simple chemical synthesis of various morphologies of tin dioxide semiconductor and its nanocomposite. Journal of Materials Science: Materials in Electronics, 2015, 26, 6075-6085.	2.2	10
60	Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes. Journal of Materials Science: Materials in Electronics, 2015, 26, 9591-9599.	2.2	60
61	Room temperature synthesis and magnetic property studies of Fe 3 O 4 nanoparticles prepared by a simple precipitation method. Journal of Industrial and Engineering Chemistry, 2015, 21, 599-603.	5.8	51
62	A Surfactant-Free Sonochemical Method for Synthesis of Cu ₂ Te Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 858-864.	0.6	5
63	Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. Journal of Industrial and Engineering Chemistry, 2015, 24, 284-292.	5 . 8	128
64	Application of glucose as a green capping agent and reductant to fabricate Cul micro/nanostructures. Materials Research Bulletin, 2014, 49, 14-20.	5. 2	47
65	A facile hydrothermal method for synthesis different morphologies of PbTe nanostructures. Journal of Industrial and Engineering Chemistry, 2014, 20, 3335-3341.	5.8	23
66	A sonochemical-assisted synthesis of spherical silica nanostructures by using a new capping agent. Ceramics International, 2014, 40, 495-499.	4.8	40
67	A Simple Chemical Method for Synthesis of NiFe2O4 Nanoparticles and Polystyrene-Based Magnetic Nanocomposites. Journal of Cluster Science, 2014, 25, 1225-1236.	3.3	13
68	A Facile Room Temperature Synthesis of Zinc Oxide Nanostructure and Its Influence on the Flame Retardancy of Poly Vinyl Alcohol. Journal of Cluster Science, 2014, 25, 397-408.	3.3	44
69	The Effect of Aminated Carbon Nanotube and Phosphorus Pentoxide on the Thermal Stability and Flame Retardant Properties of the Acrylonitrile–Butadiene–Styrene. Journal of Cluster Science, 2014, 25, 541-548.	3.3	13
70	Sonochemical synthesis of CoFe2O4 nanoparticles and their application in magnetic polystyrene nanocomposites. Journal of Industrial and Engineering Chemistry, 2014, 20, 4119-4123.	5.8	50
71	Synthesis and characterization of CulnSe2 nanocrystals via facile microwave approach and study of their behavior in solar cell. Materials Science in Semiconductor Processing, 2014, 25, 98-105.	4.0	25
72	A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3970-3974.	5.8	174

#	Article	IF	Citations
73	Acrylonitrile–butadiene–styrene/poly(vinyl acetate)/nanosilica mixed matrix membrane for He/CH ₄ separation. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 638-644.	1.5	36
74	Synergistic Effect Between Sb2O3 Nanoparticles–Trichloromelamine and Carbon Nanotube on the Flame Retardancy and Thermal Stability of the Cellulose Acetate. Journal of Cluster Science, 2014, 25, 925-936.	3.3	14
75	Sonochemical synthesis of La(OH)3 nanoparticle and its influence on the flame retardancy of cellulose acetate nanocomposite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3507-3512.	5.8	61
76	Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3709-3713.	5.8	49
77	Synthesis and application of lead telluride nanoparticles for degrediation of organic pollution. Journal of Industrial and Engineering Chemistry, 2014, 20, 4000-4007.	5.8	20
78	A sonochemical-assisted method for synthesis of BaFe12O19 nanoparticles and hard magnetic nanocomposites. Journal of Industrial and Engineering Chemistry, 2014, 20, 3425-3429.	5.8	19
79	Synthesis of magnesium hydroxide nanofiller and its use for improving thermal properties of new poly(etherâ€amide). Journal of Applied Polymer Science, 2013, 127, 2004-2009.	2.6	20
80	Synthesis, Characterization, Photoluminescence and Photocatalytic Properties of CeO2 Nanoparticles by the Sonochemical Method. Journal of Cluster Science, 2013, 24, 1151-1162.	3.3	29
81	A Facile Sonochemical Method for Synthesis of Mercury Selenide Nanostructures. Journal of Cluster Science, 2013, 24, 881-890.	3.3	11
82	The Effect of Flower-Like Magnesium Hydroxide Nanostructure on the Thermal Stability of Cellulose Acetate and Acrylonitrile–Butadiene–Styrene. Journal of Cluster Science, 2013, 24, 73-84.	3.3	37
83	Sonochemical Synthesis and Photocatalytic Properties of Metal Hydroxide and Carbonate (M:Mg, Ca,) Tj ETQq1	1 0,78431	4 rgBT /Over
84	Synergistic Effect between Sb2O3 Nanostructure and Brominated Compound on the Flame Retardant Properties of the Polymeric Matrixes. High Temperature Materials and Processes, 2013, 32, 125-132.	1.4	14
85	Solvothermal synthesis of carbon nanostructure and its influence on thermal stability of poly styrene. Composites Part B: Engineering, 2013, 55, 362-367.	12.0	21
86	Synthesis of CulnS2 nanoparticles via simple microwave approach and investigation of their behavior in solar cell. Materials Science in Semiconductor Processing, 2013, 16, 696-704.	4.0	37
87	Synthesis and characterization of CulnS2 microsphere under controlled reaction conditions and its application in low-cost solar cells. Materials Science in Semiconductor Processing, 2013, 16, 1485-1494.	4.0	68
88	Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol. Composites Part B: Engineering, 2013, 45, 550-555.	12.0	118
89	Synthesis and Characterization of HgSe Nanostructure Using a Novel Precursor. High Temperature Materials and Processes, 2013, 32, 157-162.	1.4	6
90	Preparation and Characterization of Poly Methyl Methacrylate-cadmium Sulfide Nanocomposite. High Temperature Materials and Processes, 2012, 31, .	1.4	4

#	Article	IF	Citations
91	Synthesis of Different Morphologies of PbS Nanostructures via Hydrothermal Process. High Temperature Materials and Processes, 2012, 31, 707-710.	1.4	5
92	The Effect of CdS/organic Nanostructure as Additive on the Thermal Stability of ABS Polymer. High Temperature Materials and Processes, 2012, 31, .	1.4	4
93	A Simple Method for Synthesis of PbS Nanoparticles Using 2-Mercaptoethanol as the Capping Agent. High Temperature Materials and Processes, 2012, 31, 723-725.	1.4	10
94	Culns2/Cus Nanocomposite: Synthesis via Simple Microwave Approach and Investigation Its Behavior in Solar Cell. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1139-1145.	3.7	14
95	Hydrothermal synthesis of star-like and dendritic PbS nanoparticles from new precursors. Particuology, 2012, 10, 628-633.	3.6	26
96	Polymeric Matrix Nanocomposites: Influence of Cadmium Sulfide Nanostructure on the Thermal Degradation of Poly(Vinyl Alcohol) and Cellulose Acetate. Journal of Cluster Science, 2012, 23, 1081-1095.	3.3	29
97	A novel acrylonitrile–butadiene–styrene/poly(ethylene glycol) membrane: preparation, characterization, and gas permeation study. Polymers for Advanced Technologies, 2012, 23, 1207-1218.	3.2	61
98	Thermal, magnetic, and optical characteristics of ABSâ∈Fe ₂ O ₃ nanocomposites. Journal of Applied Polymer Science, 2012, 125, 3268-3274.	2.6	43
99	Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron, 2012, 35, 149-153.	2.2	127
100	Polymeric nanocomposite materials: Synthesis and thermal degradation of acrylonitrile–butadiene–styrene/tin sulfide (ABS/SnS). Inorganica Chimica Acta, 2011, 371, 1-5.	2.4	41
101	Polymeric nanocomposite materials: Preparation and characterization of star-shaped PbS nanocrystals and their influence on the thermal stability of acrylonitrile–butadiene–styrene (ABS) copolymer. Polyhedron, 2011, 30, 1055-1060.	2.2	136
102	Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. Journal of Alloys and Compounds, 2010, 492, 570-575.	5.5	155
103	Modification of ABS Membrane by PEG for Capturing Carbon Dioxide from CO ₂ /N ₂ Streams. Separation Science and Technology, 2010, 45, 1385-1394.	2.5	72
104	Synthesis of different morphologies of bismuth sulfide nanostructures via hydrothermal process in the presence of thioglycolic acid. Journal of Alloys and Compounds, 2009, 488, 442-447.	5.5	126
105	The Effect of Calcium Perovskite and Newly Developed Magnetic CaFe2O4/CaTiO3 Perovskite Nanocomposite on Degradation of Toxic Dyes Under UV–Visible Radiation. Journal of Cluster Science, 0, , 1.	3.3	0
106	Smart Peptide/Au Nano-carriers for Drug Delivery Systems: Synthesis and Characterization, Interactions with Calf Thymus DNA, and In Vitro Cytotoxicity Studies. Journal of Cluster Science, 0, , 1.	3.3	0
107	Preparation and photocatalytic study of CoFe2O4/TiO2/Au nanocomposites and their applications in organic pollutant degradation and modeling by an artificial neural network (ANN). Journal of Materials Science: Materials in Electronics, 0 , , 1 .	2.2	1