
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11188498/publications.pdf Version: 2024-02-01

DETRA ROCIC

#	Article	IF	CITATIONS
1	G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H999-H1016.	1.5	13
2	CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean <i>G6PD</i> Variant. Hypertension, 2020, 76, 523-532.	1.3	15
3	Pathophysiology of chronic peripheral ischemia: new perspectives. Therapeutic Advances in Chronic Disease, 2020, 11, 204062231989446.	1.1	13
4	Glucose-6-phosphate dehydrogenase increases Ca ²⁺ currents by interacting with Ca _v 1.2 and reducing intrinsic inactivation of the L-type calcium channel. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H144-H158.	1.5	6
5	Comparison of Cardiovascular Benefits of Bariatric Surgery and Abdominal Lipectomy. Current Hypertension Reports, 2019, 21, 37.	1.5	1
6	20â€HETE Antagonism Reduces Left Ventricular Remodeling Postâ€Myocardial Infarction. FASEB Journal, 2019, 33, 817.9.	0.2	1
7	Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. Journal of Molecular and Cellular Cardiology, 2018, 117, 88-99.	0.9	23
8	Lamininâ€Î²6 integrin Interaction is Crucial for Coronary Collateral Growth. FASEB Journal, 2018, 32, 899.5.	0.2	0
9	Intraâ€Abdominal Lipectomy Reduces Large Arterial Stiffness and Blood Pressure in Metabolic Syndrome. FASEB Journal, 2018, 32, 569.9.	0.2	0
10	Glucoseâ€6â€Phosphate Dehydrogenase Regulate Metabolomeâ€Transcriptome Axis And Mitochondrial Malfunction In Diabetic Hearts: Implications In Pathogenesis Of Diabetic Cardiomyopathy And Mending Of Broken Hearts. FASEB Journal, 2018, 32, 903.12.	0.2	0
11	Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H742-H751.	1.5	18
12	Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H528-H540.	1.5	31
13	Can microRNAs be Biomarkers or Targets for Therapy of Ischemic Coronary Artery Disease in Metabolic Syndrome?. Current Drug Targets, 2017, 18, 1722-1732.	1.0	6
14	The Role of Vascular Smooth Muscle Phenotype in Coronary Artery Disease. , 2016, , 15-22.		1
15	Mechanisms of Comorbidities Associated With the Metabolic Syndrome: Insights from the JCR:LA-cp Corpulent Rat Strain. Frontiers in Nutrition, 2016, 3, 44.	1.6	12
16	miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1323-H1335.	1.5	13
17	Can ErbB2 overexpression protect against doxorubicin cardiotoxicity?. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1235-H1236.	1.5	1
18	A Device for Performing Automated Balloon Catheter Inflation Ischemia Studies. PLoS ONE, 2014, 9, e95823.	1.1	1

#	Article	IF	CITATIONS
19	Role of MMP2 and MMP9 in TRPV4-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L652-L659.	1.3	64
20	miRâ€⊋1 normalizes vascular smooth muscle proliferation and improves coronary collateral growth in metabolic syndrome. FASEB Journal, 2014, 28, 4088-4099.	0.2	23
21	Impaired Coronary Collateral Growth in the Metabolic Syndrome Is in Part Mediated by Matrix Metalloproteinase 12–Dependent Production of Endostatin and Angiostatin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1339-1349.	1.1	18
22	MicroRNA-145 Restores Contractile Vascular Smooth Muscle Phenotype and Coronary Collateral Growth in the Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 727-736.	1.1	64
23	Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1708-H1718.	1.5	87
24	Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 325-334.	1.1	57
25	The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease: The Great Exploration. Experimental Diabetes Research, 2012, 2012, 1-13.	3.8	148
26	Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome?. Vascular Pharmacology, 2012, 57, 179-186.	1.0	38
27	miRâ€mediated regulation of coronary collateral growth in the metabolic syndrome. FASEB Journal, 2012, 26, 1055.4.	0.2	0
28	Increased MMP8 and 12 activation correlates with elevated endostatin and angiostatin and impaired coronary collateral growth in the metabolic syndrome. FASEB Journal, 2012, 26, .	0.2	1
29	Sustained activation of p38 MAPK and MMP2 and 9 exacerbate neointima formation following vascular injury in metabolic syndrome rats. FASEB Journal, 2012, 26, 866.20.	0.2	0
30	MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK. Journal of Molecular and Cellular Cardiology, 2011, 51, 1015-1025.	0.9	41
31	Slingshot Isoform-Specific Regulation of Cofilin-Mediated Vascular Smooth Muscle Cell Migration and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2424-2431.	1.1	29
32	Angiotensin type I receptor blockade in conjunction with enhanced Akt activation restores coronary collateral growth in the metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1938-H1949.	1.5	13
33	p38 MAPKâ€dependent regulation of MMPs during coronary collateral growth≥. FASEB Journal, 2011, 25, 1031.9.	0.2	0
34	p38 MAPKâ€dependent MMP regulation during coronary collateral growth. FASEB Journal, 2010, 24, 599.16.	0.2	0
35	Slingshotâ€isoform specific regulation of cofilin activation during VSMC migration and neointima formation following vascular injury. FASEB Journal, 2010, 24, 790.7.	0.2	0
36	Stimulation of Coronary Collateral Growth by Granulocyte Stimulating Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1817-1822.	1.1	25

#	Article	IF	CITATIONS
37	Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1811-H1821.	1.5	20
38	Redox-Dependent Mechanisms in Coronary Collateral Growth: The "Redox Window―Hypothesis. Antioxidants and Redox Signaling, 2009, 11, 1961-1974.	2.5	66
39	Coronary artery vascular smooth muscleâ€specific contractile protein expression in Syndrome X. FASEB Journal, 2009, 23, 775.6.	0.2	0
40	Evaluating the differentiation state of aortic vascular smooth muscle cells in the metabolic syndrome. FASEB Journal, 2009, 23, 775.10.	0.2	0
41	The Mechanistic Basis for the Disparate Effects of Angiotensin II on Coronary Collateral Growth. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 61-67.	1.1	42
42	The Mechanistic Basis for the Disparate Effects of Ang II on Coronary Collateral Growth. FASEB Journal, 2008, 22, 520.3.	0.2	0
43	Role of NAD(P)H Oxidase―and Mitochondriaâ€derived ROS in Coronary Collateral Growth. FASEB Journal, 2008, 22, 524.5.	0.2	0
44	Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2729-H2736.	1.5	62
45	Restoration of coronary collateral growth in the Zucker obese rat:. Basic Research in Cardiology, 2007, 102, 217-223.	2.5	44
46	Mechanisms Underlying Coronary Collateral Growth. FASEB Journal, 2007, 21, A79.	0.2	0
47	Optimal ROS concentration and p38 MAP kinase are required for coronary collateral development. FASEB Journal, 2006, 20, A718.	0.2	0
48	Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H37-H42.	1.5	90
49	NAD(P)H Oxidases and TGF-β–Induced Cardiac Fibroblast Differentiation. Circulation Research, 2005, 97, 850-852.	2.0	28
50	Vascular Endothelial Growth Factor Is Required for Coronary Collateral Growth in the Rat. Circulation, 2005, 112, 2108-2113.	1.6	126
51	Phosphoinositide-Dependent Kinase 1 and p21-Activated Protein Kinase Mediate Reactive Oxygen Species–Dependent Regulation of Platelet-Derived Growth Factor–Induced Smooth Muscle Cell Migration. Circulation Research, 2004, 94, 1219-1226.	2.0	152
52	Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2004, 287, C494-C499.	2.1	107
53	Pyk2- and Src-Dependent Tyrosine Phosphorylation of PDK1 Regulates Focal Adhesions. Molecular and Cellular Biology, 2003, 23, 8019-8029.	1.1	76
54	Reactive Oxygen Species Sensitivity of Angiotensin II-dependent Translation Initiation in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 36973-36979.	1.6	30

#	Article	IF	CITATIONS
55	NAD(P)H Oxidase-Derived Reactive Oxygen Species as Mediators of Angiotensin II Signaling. Antioxidants and Redox Signaling, 2002, 4, 899-914.	2.5	188
56	Angiotensin II Stimulation of NAD(P)H Oxidase Activity. Circulation Research, 2002, 91, 406-413.	2.0	672
57	A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. American Journal of Physiology - Cell Physiology, 2001, 280, C90-C99.	2.1	93
58	Down-regulation by Antisense Oligonucleotides Establishes a Role for the Proline-rich Tyrosine Kinase PYK2 in Angiotensin II-induced Signaling in Vascular Smooth Muscle. Journal of Biological Chemistry, 2001, 276, 21902-21906.	1.6	39