List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11187502/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optimal Location of Discretionary Service Facilities. Transportation Science, 1992, 26, 201-211.                                                              | 2.6 | 232       |
| 2  | Facility Reliability Issues in Networkp-Median Problems: Strategic Centralization and Co-Location Effects. Operations Research, 2007, 55, 332-350.            | 1.2 | 219       |
| 3  | The generalized maximal covering location problem. Computers and Operations Research, 2002, 29, 563-581.                                                      | 2.4 | 218       |
| 4  | Competitive facility location and design problem. European Journal of Operational Research, 2007, 182,<br>40-62.                                              | 3.5 | 170       |
| 5  | Optimal Server Location on a Network Operating as an <i>M</i> / <i>G</i> /1 Queue. Operations<br>Research, 1985, 33, 746-771.                                 | 1.2 | 161       |
| 6  | The gradual covering decay location problem on a network. European Journal of Operational Research, 2003, 151, 474-480.                                       | 3.5 | 161       |
| 7  | Analysis of Transfer Lines Consisting of Two Unreliable Machines with Random Processing Times and Finite Storage Buffers. A H E Transactions, 1981, 13, 2-11. | 0.3 | 155       |
| 8  | Generalized coverage: New developments in covering location models. Computers and Operations Research, 2010, 37, 1675-1687.                                   | 2.4 | 147       |
| 9  | Bargaining in competing supply chains with uncertainty. European Journal of Operational Research, 2009, 197, 548-556.                                         | 3.5 | 120       |
| 10 | DETERMINISTIC APPROXIMATIONS FOR INVENTORY MANAGEMENT AT SERVICE FACILITIES. IIE Transactions, 1993, 25, 98-104.                                              | 2.1 | 119       |
| 11 | Incorporating congestion in preventive healthcare facility network design. European Journal of<br>Operational Research, 2009, 198, 922-935.                   | 3.5 | 116       |
| 12 | Competitive facility location model with concave demand. European Journal of Operational Research, 2007, 181, 598-619.                                        | 3.5 | 103       |
| 13 | Stochastic models for inventory management at service facilities. Stochastic Models, 1999, 15, 695-718.                                                       | 0.3 | 95        |
| 14 | Minimax regret p-center location on a network with demand uncertainty. Location Science, 1997, 5, 247-254.                                                    | 0.2 | 92        |
| 15 | Flow intercepting spatial interaction model: a new approach to optimal location of competitive facilities. Location Science, 1998, 6, 41-65.                  | 0.2 | 92        |
| 16 | The impact of client choice on preventive healthcare facility network design. OR Spectrum, 2012, 34, 349-370.                                                 | 2.1 | 89        |
| 17 | A bilevel model for preventive healthcare facility network design with congestion. IIE Transactions, 2010, 42, 865-880.                                       | 2.1 | 84        |
| 18 | Locating Discretionary Service Facilities, II: Maximizing Market Size, Minimizing Inconvenience.<br>Operations Research, 1995, 43, 623-632.                   | 1.2 | 83        |

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Designing emergency response networks for hazardous materials transportation. Computers and Operations Research, 2007, 34, 1374-1388.                     | 2.4 | 81        |
| 20 | Locating Multiple Competitive Facilities: Spatial Interaction Models with Variable Expenditures. Annals of Operations Research, 2002, 111, 197-225.       | 2.6 | 73        |
| 21 | Locating service facilities to reduce lost demand. IIE Transactions, 2006, 38, 933-946.                                                                   | 2.1 | 72        |
| 22 | Algorithms for the robust 1-center problem on a tree. European Journal of Operational Research, 2000, 123, 292-302.                                       | 3.5 | 68        |
| 23 | Minmax Regret Median Location on a Network Under Uncertainty. INFORMS Journal on Computing, 2000, 12, 104-110.                                            | 1.0 | 68        |
| 24 | Cooperative cover location problems: The planar case. IIE Transactions, 2009, 42, 232-246.                                                                | 2.1 | 67        |
| 25 | A heuristic with worst-case analysis for minimax routing of two travelling salesmen on a tree.<br>Discrete Applied Mathematics, 1996, 68, 17-32.          | 0.5 | 64        |
| 26 | Locating Facilities in the Presence of Disruptions and Incomplete Information*. Decision Sciences, 2009, 40, 845-868.                                     | 3.2 | 63        |
| 27 | A coordinated location-inventory model. European Journal of Operational Research, 2012, 217, 500-508.                                                     | 3.5 | 63        |
| 28 | Location of terror response facilities: A game between state and terrorist. European Journal of<br>Operational Research, 2007, 177, 1113-1133.            | 3.5 | 61        |
| 29 | Facility Location with Stochastic Demand and Constraints on Waiting Time. Manufacturing and Service Operations Management, 2008, 10, 484-505.             | 2.3 | 56        |
| 30 | Facility Location Problems with Stochastic Demands and Congestion. , 2002, , 329-371.                                                                     |     | 56        |
| 31 | Scheduling Workforce and Workflow in a High Volume Factory. Management Science, 1997, 43, 158-172.                                                        | 2.4 | 56        |
| 32 | Optimal 2-Facility Network Districting in the Presence of Queuing. Transportation Science, 1985, 19, 261-277.                                             | 2.6 | 55        |
| 33 | A queueing control model for retail services having back room operations and cross-trained workers. Computers and Operations Research, 2004, 31, 201-222. | 2.4 | 54        |
| 34 | Improving the location of minisum facilities through network modification. Annals of Operations<br>Research, 1992, 40, 1-16.                              | 2.6 | 53        |
| 35 | The variable radius covering problem. European Journal of Operational Research, 2009, 196, 516-525.                                                       | 3.5 | 53        |
| 36 | Minimizing the Total Flow Time of n Jobs on a Network. IIE Transactions, 1991, 23, 236-244.                                                               | 2.1 | 52        |

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optimal location with equitable loads. Annals of Operations Research, 2009, 167, 307-325.                                                                  | 2.6 | 52        |
| 38 | The equitable location problem on the plane. European Journal of Operational Research, 2007, 183, 578-590.                                                 | 3.5 | 51        |
| 39 | Finding the Optimal a Priori Tour and Location of a Traveling Salesman with Nonhomogeneous<br>Customers. Transportation Science, 1988, 22, 148-154.        | 2.6 | 50        |
| 40 | On the Benefits of Risk Pooling in Inventory Management. Production and Operations Management, 2011, 20, 57-71.                                            | 2.1 | 50        |
| 41 | (p â^ 1)(p + 1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discrete Applied Mathematics, 1997, 75, 201-216. | 0.5 | 49        |
| 42 | Locating mobile servers on a network with markovian properties. Networks, 1982, 12, 73-86.                                                                 | 1.6 | 48        |
| 43 | Location-allocation on congested networks. European Journal of Operational Research, 1986, 26, 238-250.                                                    | 3.5 | 47        |
| 44 | The transfer point location problem. European Journal of Operational Research, 2007, 179, 978-989.                                                         | 3.5 | 47        |
| 45 | Location and allocation of service units on a congested network. IIE Transactions, 2008, 40, 422-433.                                                      | 2.1 | 47        |
| 46 | The minimum weighted covering location problem with distance constraints. Computers and Operations Research, 2008, 35, 356-372.                            | 2.4 | 45        |
| 47 | Dynamic Repositioning of Indistinguishable Service Units on Transportation Networks.<br>Transportation Science, 1981, 15, 115-136.                         | 2.6 | 44        |
| 48 | Locating a Mobile Server Queueing Facility on a Tree Network. Management Science, 1985, 31, 764-772.                                                       | 2.4 | 44        |
| 49 | Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand.<br>Transportation Science, 2012, 46, 247-261.                      | 2.6 | 44        |
| 50 | Locating service facilities whose reliability is distance dependent. Computers and Operations Research, 2003, 30, 1683-1695.                               | 2.4 | 43        |
| 51 | Inbound Logistic Planning: Minimizing Transportation and Inventory Cost. Transportation Science, 2006, 40, 287-299.                                        | 2.6 | 43        |
| 52 | Bargaining within the Supply Chain and Its Implications in an Industry. Decision Sciences, 2016, 47, 193-218.                                              | 3.2 | 43        |
| 53 | Technical Note—Conditional Location Problems on Networks. Transportation Science, 1990, 24, 77-78.                                                         | 2.6 | 41        |
| 54 | A Simple Heuristic for m-Machine Flow-Shop and its Applications in Routing-Scheduling Problems.<br>Operations Research, 1999, 47, 165-170.                 | 1.2 | 39        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dynamic order replenishment policy in internet-based supply chains. Mathematical Methods of Operations Research, 2001, 53, 371-390.                                                       | 0.4 | 39        |
| 56 | The median problem with congestion. Computers and Operations Research, 1982, 9, 119-126.                                                                                                  | 2.4 | 38        |
| 57 | Locating flow-capturing units on a network with multi-counting and diminishing returns to scale.<br>European Journal of Operational Research, 1996, 91, 495-506.                          | 3.5 | 38        |
| 58 | Location of congested capacitated facilities with distance-sensitive demand. IIE Transactions, 2006, 38, 213-221.                                                                         | 2.1 | 38        |
| 59 | An improved algorithm for the minmax regret median problem on a tree. Networks, 2003, 41, 97-103.                                                                                         | 1.6 | 37        |
| 60 | Dynamic inventory strategies for profit maximization in a service facility with stochastic service, demand and lead time. Mathematical Methods of Operations Research, 2004, 60, 497-521. | 0.4 | 37        |
| 61 | A -approximation algorithm for the two-machine routing open-shop problem on a two-node network.<br>European Journal of Operational Research, 2005, 166, 3-24.                             | 3.5 | 37        |
| 62 | Locating Discretionary Service Facilities Based on Probabilistic Customer Flows. Transportation Science, 1995, 29, 276-290.                                                               | 2.6 | 36        |
| 63 | The routing open-shop problem on a network: Complexity and approximation. European Journal of Operational Research, 2006, 173, 531-539.                                                   | 3.5 | 36        |
| 64 | A new formulation for the conditional -median and -center problems. Operations Research Letters, 2008, 36, 481-483.                                                                       | 0.5 | 36        |
| 65 | The minmax regret gradual covering location problem on a network with incomplete information of demand weights. European Journal of Operational Research, 2011, 208, 233-238.             | 3.5 | 36        |
| 66 | Technical Note—Routing and Location-Routing p-Delivery Men Problems on a Path. Transportation<br>Science, 1994, 28, 162-166.                                                              | 2.6 | 35        |
| 67 | Balancing staffing and switching costs in a service center with flexible servers. European Journal of Operational Research, 2007, 177, 924-938.                                           | 3.5 | 35        |
| 68 | Improving the location of minimax facilities through network modification. Networks, 1994, 24, 31-41.                                                                                     | 1.6 | 34        |
| 69 | The facility and transfer points location problem. International Transactions in Operational Research, 2005, 12, 387-402.                                                                 | 1.8 | 34        |
| 70 | The multiple server center location problem. Annals of Operations Research, 2009, 167, 337-352.                                                                                           | 2.6 | 34        |
| 71 | The maximum covering problem with travel time uncertainty. IIE Transactions, 2013, 45, 81-96.                                                                                             | 2.1 | 34        |
| 72 | Repositioning of distinguishable urban service units on networks. Computers and Operations<br>Research, 1981, 8, 105-118.                                                                 | 2.4 | 33        |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Continuous review inventory models for perishable items ordered in batches. Mathematical Methods of Operations Research, 2010, 72, 217-247.                              | 0.4 | 33        |
| 74 | A note on the location of an obnoxious facility on a network. European Journal of Operational Research, 2000, 120, 215-217.                                              | 3.5 | 32        |
| 75 | The p-median problem under uncertainty. European Journal of Operational Research, 2008, 189, 19-30.                                                                      | 3.5 | 32        |
| 76 | Shelf Space Management When Demand Depends on the Inventory Level. Production and Operations Management, 2011, 20, 714-726.                                              | 2.1 | 32        |
| 77 | The multiple gradual cover location problem. Journal of the Operational Research Society, 2019, 70, 931-940.                                                             | 2.1 | 32        |
| 78 | Sales-delivery man problems on treelike networks. Networks, 1995, 25, 45-58.                                                                                             | 1.6 | 30        |
| 79 | Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns. Omega, 2013, 41, 766-779.                        | 3.6 | 30        |
| 80 | A Probabilistic Minimax Location Problem on the Plane. Annals of Operations Research, 2003, 122, 59-70.                                                                  | 2.6 | 29        |
| 81 | The Minimax and Maximin Location Problems on a Network with Uniform Distributed Weights. IIE Transactions, 2003, 35, 1017-1025.                                          | 2.1 | 29        |
| 82 | The Maximal Covering Problem with Some Negative Weights. Geographical Analysis, 2009, 41, 30-42.                                                                         | 1.9 | 29        |
| 83 | Strategic Idleness and Dynamic Scheduling in an Open-Shop Service Network: Case Study and Analysis.<br>Manufacturing and Service Operations Management, 2017, 19, 52-71. | 2.3 | 27        |
| 84 | Threshold-Based Allocation Policies for Inventory Management of Red Blood Cells. Manufacturing and Service Operations Management, 2018, 20, 347-362.                     | 2.3 | 27        |
| 85 | Stochastic Location Models with Congestion. , 2015, , 443-486.                                                                                                           |     | 26        |
| 86 | An EOQ model with state-dependent demand rate. European Journal of Operational Research, 2006, 171, 255-272.                                                             | 3.5 | 25        |
| 87 | Optimizing capacity, pricing and location decisions on a congested network with balking.<br>Mathematical Methods of Operations Research, 2011, 74, 233-255.              | 0.4 | 25        |
| 88 | Maximal Accessibility Network Design in the Public Sector. Transportation Science, 2016, 50, 336-347.                                                                    | 2.6 | 25        |
| 89 | Probabilistic a priori routing-location problems. Naval Research Logistics, 1994, 41, 973-989.                                                                           | 1.4 | 24        |
| 90 | Minimum covering criterion for obnoxious facility location on a network. Networks, 1996, 28, 1-5.                                                                        | 1.6 | 24        |

| #   | Article                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The collection depots location problem on networks. Naval Research Logistics, 2002, 49, 15-24.                                                            | 1.4 | 24        |
| 92  | Optimal management of cross-trained workers in services with negligible switching costs. European<br>Journal of Operational Research, 2005, 167, 349-369. | 3.5 | 24        |
| 93  | Integrated modeling of urban hierarchy and transportation network planning. Transportation Research, Part A: Policy and Practice, 2010, 44, 506-522.      | 2.0 | 24        |
| 94  | On covering location problems on networks with edge demand. Computers and Operations Research, 2016, 74, 214-227.                                         | 2.4 | 24        |
| 95  | Sampling manholes to home in on SARS-CoV-2 infections. PLoS ONE, 2020, 15, e0240007.                                                                      | 1.1 | 24        |
| 96  | Developments in network location with mobile and congested facilities. European Journal of<br>Operational Research, 1981, 6, 104-116.                     | 3.5 | 23        |
| 97  | Locating flow-intercepting facilities: New approaches and results. Annals of Operations Research, 1995, 60, 121-143.                                      | 2.6 | 23        |
| 98  | Managing Perishable Inventory Systems with Multiple Priority Classes. Production and Operations Management, 2019, 28, 2305-2322.                          | 2.1 | 23        |
| 99  | Location choice and risk attitude of a decision maker. Omega, 2017, 66, 170-181.                                                                          | 3.6 | 22        |
| 100 | Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus. PLoS ONE, 2021, 16, e0248893.                                           | 1.1 | 22        |
| 101 | Solving a stochastic facility location/fleet management problem with logic-based Benders' decomposition. IIE Transactions, 2013, 45, 896-911.             | 2.1 | 21        |
| 102 | A location model for a facility operating as anM/G/k queue. Networks, 1989, 19, 717-728.                                                                  | 1.6 | 20        |
| 103 | The p maximal cover - p partial center problem on networks. European Journal of Operational Research, 1994, 72, 432-442.                                  | 3.5 | 20        |
| 104 | Probabilistic location problems with discrete demand weights. Networks, 2004, 44, 47-57.                                                                  | 1.6 | 20        |
| 105 | Modeling Competitive Facility Location Problems: New Approaches and Results. , 2009, , 156-181.                                                           |     | 20        |
| 106 | Efficient solution approaches for a discrete multi-facility competitive interaction model. Annals of Operations Research, 2009, 167, 297-306.             | 2.6 | 20        |
| 107 | The Ordered Gradual Covering Location Problem on a Network. Discrete Applied Mathematics, 2009, 157, 3689-3707.                                           | 0.5 | 20        |
| 108 | Big segment small segment global optimization algorithm on networks. Networks, 2011, 58, 1-11.                                                            | 1.6 | 19        |

| #   | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | On <mml:math <br="" altimg="si36.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mi>n</mml:mi></mml:math> -facility median problem with facilities subject<br>to failure facing uniform demand. Discrete Applied Mathematics, 2011, 159, 420-432. | 0.5 | 18        |
| 110 | Optimal response against bioterror attack on airport terminal. European Journal of Operational Research, 2012, 219, 415-424.                                                                                                                                                                     | 3.5 | 18        |
| 111 | Using Strategic Idleness to Improve Customer Service Experience in Service Networks. Operations<br>Research, 2014, 62, 123-140.                                                                                                                                                                  | 1.2 | 18        |
| 112 | Supporting New Product or Service Introductions: Location, Marketing, and Word of Mouth.<br>Operations Research, 2014, 62, 994-1013.                                                                                                                                                             | 1.2 | 18        |
| 113 | Efficiency and production rate of a transfer line with two machines and a finite storage buffer.<br>European Journal of Operational Research, 1982, 9, 295-308.                                                                                                                                  | 3.5 | 17        |
| 114 | Locating a facility on a congested network with random lengths. Networks, 1985, 15, 275-293.                                                                                                                                                                                                     | 1.6 | 17        |
| 115 | Medi-centre Location Problems. Journal of the Operational Research Society, 1991, 42, 313-322.                                                                                                                                                                                                   | 2.1 | 17        |
| 116 | Locating capacitated facilities to maximize captured demand. IIE Transactions, 2007, 39, 1015-1029.                                                                                                                                                                                              | 2.1 | 17        |
| 117 | Location of facilities on a network with groups of demand points. IIE Transactions, 2001, 33, 637-648.                                                                                                                                                                                           | 2.1 | 16        |
| 118 | Minmax p-Traveling Salesmen Location Problems on a Tree. Annals of Operations Research, 2002, 110, 55-68.                                                                                                                                                                                        | 2.6 | 16        |
| 119 | Ensuring feasibility in location problems with stochastic demands and congestion. IIE Transactions, 2009, 41, 467-481.                                                                                                                                                                           | 2.1 | 16        |
| 120 | Cooperative covering problems on networks. Networks, 2014, 63, 334-349.                                                                                                                                                                                                                          | 1.6 | 16        |
| 121 | Repositioning of Two Distinguishable Service Vehicles on Networks. IEEE Transactions on Systems,<br>Man, and Cybernetics, 1981, 11, 187-193.                                                                                                                                                     | 0.9 | 15        |
| 122 | Routing Two-Machine Flowshop Problems on Networks with Special Structure. Transportation Science, 1996, 30, 303-314.                                                                                                                                                                             | 2.6 | 15        |
| 123 | Truthful Cheap Talk: Why Operational Flexibility May Lead to Truthful Communication. Management Science, 2019, 65, 1624-1641.                                                                                                                                                                    | 2.4 | 14        |
| 124 | Production/Clearing Models Under Continuous and Sporadic Reviews. Methodology and Computing in Applied Probability, 2005, 7, 203-224.                                                                                                                                                            | 0.7 | 13        |
| 125 | The probabilistic gradual covering location problem on a network with discrete random demand weights. Computers and Operations Research, 2011, 38, 1493-1500.                                                                                                                                    | 2.4 | 13        |
| 126 | Up Then Down: Bidâ€Price Trends in Revenue Management. Production and Operations Management, 2015, 24, 1135-1147.                                                                                                                                                                                | 2.1 | 13        |

| #   | Article                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Almost Robust Discrete Optimization. European Journal of Operational Research, 2019, 276, 451-465.                                                    | 3.5 | 13        |
| 128 | Introducing Autonomous Vehicles: Adoption Patterns and Impacts on Social Welfare. Manufacturing and Service Operations Management, 2022, 24, 352-369. | 2.3 | 13        |
| 129 | The 1-minimax and 1-maximin problems with demand weights of general probability distributions.<br>Networks, 2007, 50, 127-135.                        | 1.6 | 12        |
| 130 | A Location Model for Urban Hierarchy Planning with Population Dynamics. Environment and Planning<br>A, 2009, 41, 996-1016.                            | 2.1 | 12        |
| 131 | Location of response facilities: a simultaneous game between state and terrorist. International<br>Journal of Operational Research, 2011, 10, 102.    | 0.1 | 12        |
| 132 | CONTINUOUS REVIEW INVENTORY MODELS FOR PERISHABLE ITEMS WITH LEADTIMES. Probability in the Engineering and Informational Sciences, 2020, 34, 317-342. | 0.6 | 12        |
| 133 | Stochastic Location Models with Congestion. , 2019, , 477-535.                                                                                        |     | 12        |
| 134 | The Relationship between Population Dynamics and Urban Hierarchy. International Regional Science Review, 2014, 37, 149-171.                           | 1.0 | 11        |
| 135 | A Game Between a Terrorist and a Passive Defender. Production and Operations Management, 2018, 27, 433-457.                                           | 2.1 | 11        |
| 136 | Optimizing facility location and design. European Journal of Operational Research, 2021, 289, 31-43.                                                  | 3.5 | 11        |
| 137 | Satisfying partial demand in facilities location. IIE Transactions, 2002, 34, 971-978.                                                                | 2.1 | 10        |
| 138 | A FLUID EOQ MODEL WITH A TWO-STATE RANDOM ENVIRONMENT. Probability in the Engineering and Informational Sciences, 2006, 20, 329-349.                  | 0.6 | 10        |
| 139 | Designing Production-Inventory-Transportation Systems with Capacitated Cross-Docks.<br>Transportation Science, 2014, 48, 121-135.                     | 2.6 | 10        |
| 140 | A FACILITY LOCATION PROBLEM WITH DISTANCE-DEPENDENT DEMAND. Decision Sciences, 1981, 12, 623-632.                                                     | 3.2 | 9         |
| 141 | The 1-Median And 1-Antimedian Problems With Continuous Probabilistic Demand Weights. Infor, 2006, 44, 267-283.                                        | 0.5 | 9         |
| 142 | Locating a semi-obnoxious facility with expropriation. Computers and Operations Research, 2008, 35, 392-403.                                          | 2.4 | 9         |
| 143 | Optimal search path for service in the presence of disruptions. Computers and Operations Research, 2011, 38, 1562-1571.                               | 2.4 | 9         |
| 144 | Structural Properties of Voronoi Diagrams in Facility Location Problems with Continuous Demand.<br>Operations Research, 2015, 63, 394-411.            | 1.2 | 9         |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Location of Facilities on a Network with Groups of Demand Points. IIE Transactions, 2001, 33, 637-648.                                                                     | 2.1 | 8         |
| 146 | Can flexibility be constraining?. IIE Transactions, 2009, 42, 45-59.                                                                                                       | 2.1 | 8         |
| 147 | Minisum multipurpose trip location problem on trees. Networks, 2014, 63, 154-159.                                                                                          | 1.6 | 8         |
| 148 | Directed assignment vs. customer choice in location inventory models. International Journal of Production Economics, 2016, 179, 179-191.                                   | 5.1 | 8         |
| 149 | Reconfiguring a set of coverage-providing facilities under travel time uncertainty. Socio-Economic<br>Planning Sciences, 2018, 62, 1-12.                                   | 2.5 | 8         |
| 150 | An Improved IP Formulation for the Uncapacitated Facility Location Problem: Capitalizing on Objective Function Structure. Annals of Operations Research, 2005, 136, 21-34. | 2.6 | 7         |
| 151 | Mean-variance analysis and the single-period inventory problem. International Journal of Systems<br>Science, 1986, 17, 1145-1151.                                          | 3.7 | 6         |
| 152 | Recent Developments in the Theory and Applications of Location Models: A Preview. Annals of Operations Research, 2002, 111, 15-16.                                         | 2.6 | 6         |
| 153 | An exact analysis of a joint production-inventory problem in two-echelon inventory systems. Naval<br>Research Logistics, 2011, 58, 713-730.                                | 1.4 | 6         |
| 154 | Responsive makeâ€ŧoâ€order supply chain network design. Naval Research Logistics, 2021, 68, 241-258.                                                                       | 1.4 | 6         |
| 155 | Generalized flow-interception facility location models with probabilistic customer flows. Stochastic Models, 1997, 13, 1-25.                                               | 0.3 | 5         |
| 156 | The route expropriation problem. IIE Transactions, 2008, 40, 468-477.                                                                                                      | 2.1 | 5         |
| 157 | Devising a Cooperation Policy for Emergency Networks. Journal of the Operational Research Society, 1987, 38, 1015-1029.                                                    | 2.1 | 4         |
| 158 | Optimal locations and districts of two traveling salesmen on a tree. Networks, 1990, 20, 803-815.                                                                          | 1.6 | 3         |
| 159 | Probabilistic Set Covering Location Problem in Congested Networks. Transportation Science, 2022, 56, 528-542.                                                              | 2.6 | 3         |
| 160 | Optimal M/G/1 Server Location on a Network Having a Fixed Facility. Journal of the Operational Research Society, 1988, 39, 1137-1146.                                      | 2.1 | 2         |
| 161 | Medi-Centre Location Problems. Journal of the Operational Research Society, 1991, 42, 313.                                                                                 | 2.1 | 2         |
| 162 | Parallel NC-algorithms for multifacility location problems with mutual communication and their applications. Networks, 2002, 40, 1-12.                                     | 1.6 | 2         |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Satisfying partial demand in facilities location. IIE Transactions, 2002, 34, 971-978.                                                                                        | 2.1 | 2         |
| 164 | A transfer/clearing inventory model under sporadic review. Mathematical Methods of Operations<br>Research, 2003, 57, 329-344.                                                 | 0.4 | 2         |
| 165 | Performance Analysis of a Fluid Production/Inventory Model with State-dependence. Methodology and Computing in Applied Probability, 2007, 9, 465-481.                         | 0.7 | 2         |
| 166 | Location problems with grouped structure of demand: Complexity and algorithms. Networks, 1998, 31, 81-92.                                                                     | 1.6 | 1         |
| 167 | Approximating Performance Measures for a Network of Unreliable Machines. IIE Transactions, 2003, 35, 665-677.                                                                 | 2.1 | 1         |
| 168 | A Game between a Terrorist and a Passive Defender. SSRN Electronic Journal, 0, , .                                                                                            | 0.4 | 1         |
| 169 | Improved complexity results for the robust mean absolute deviation problem on networks with linear vertex weights. Discrete Applied Mathematics, 2018, 239, 193-199.          | 0.5 | 1         |
| 170 | TWO-ECHELON PRODUCTION INVENTORY SYSTEMS WITH STRATEGIC CUSTOMERS. Probability in the Engineering and Informational Sciences, 2021, 35, 258-275.                              | 0.6 | 1         |
| 171 | Location problems with continuous demand and unreliable facilities: Applications of families of incremental Voronoi diagrams. Discrete Applied Mathematics, 2021, 300, 36-55. | 0.5 | 1         |
| 172 | Strategic new product media planning under emergent channel substitution and synergy. Production and Operations Management, 2022, 31, 2143-2166.                              | 2.1 | 1         |
| 173 | Cooperation among flexible manufacturing systems. , 1985, , .                                                                                                                 |     | 0         |
| 174 | Recent Developments in the Theory and Applications of Location Models: A Preview. Annals of Operations Research, 2002, 110, 15-16.                                            | 2.6 | 0         |
| 175 | Stochastic Analysis in Location Research. Profiles in Operations Research, 2011, , 241-271.                                                                                   | 0.3 | 0         |
| 176 | On the optimality of the sequential approach for network design problems of service operations.<br>Naval Research Logistics, 2018, 65, 363-377.                               | 1.4 | 0         |
| 177 | The multifacility center problems with random demand weights. Networks, 0, , .                                                                                                | 1.6 | 0         |
| 178 | Dispatching. , 1988, , 107-136.                                                                                                                                               |     | 0         |
| 179 | Location of Stationary Facilities. , 1988, , 43-84.                                                                                                                           |     | 0         |