Zhifeng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11185739/publications.pdf

Version: 2024-02-01

13 papers	763 citations	12 h-index	1125743 13 g-index
14	14	14	1403
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Co ₃ S ₄ @polyaniline nanotubes as high-performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 5505-5516.	10.3	204
2	A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. Journal of Power Sources, 2015, 274, 8-14.	7.8	97
3	One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries. Journal of Power Sources, 2014, 269, 37-45.	7.8	94
4	Sandwich-like cobalt sulfide–graphene composite – an anode material with excellent electrochemical performance for sodium ion batteries. RSC Advances, 2015, 5, 71644-71651.	3.6	77
5	Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance. Journal of Power Sources, 2015, 283, 243-250.	7.8	59
6	Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries. Journal of Power Sources, 2016, 325, 474-481.	7.8	40
7	Highâ€Voltage and Lowâ€Temperature Aqueous Supercapacitor Enabled by "Waterâ€inâ€imidazolium Chloric Electrolytes. ChemSusChem, 2018, 11, 3899-3904.	de― 6.8	37
8	Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes. ACS Applied Energy Materials, 2019, 2, 3773-3779.	5.1	32
9	The excellent cycling stability and superior rate capability of polypyrrole as the anode material for rechargeable sodium ion batteries. RSC Advances, 2016, 6, 2345-2351.	3.6	29
10	An "interaction-mediating―strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries. Nano Energy, 2020, 69, 104464.	16.0	29
11	Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance. Journal of Power Sources, 2015, 294, 650-657.	7.8	28
12	One-pot synthesis of FCNTs-wired TiO2 nanocomposites as anode materials for high-rate lithium ion batteries. Electrochimica Acta, 2014, 123, 551-559.	5.2	22
13	Effect of Molecular Structure and Coordinating Ions on the Solubility and Electrochemical Behavior of Quinone Derivatives for Aqueous Redox Flow Batteries. Journal of the Electrochemical Society, 2020, 167, 160502.	2.9	8