Antonios Makropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11185541/publications.pdf

Version: 2024-02-01

31 papers 2,879 citations

331538 21 h-index 30 g-index

41 all docs

docs citations

41

times ranked

41

3392 citing authors

#	Article	IF	CITATIONS
1	The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neurolmage, 2018, 173, 88-112.	2.1	315
2	Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain. IEEE Transactions on Medical Imaging, 2014, 33, 1818-1831.	5.4	296
3	Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. Neurolmage, 2018, 170, 5-30.	2.1	280
4	Multimodal surface matching with higher-order smoothness constraints. Neurolmage, 2018, 167, 453-465.	2.1	219
5	Regional growth and atlasing of the developing human brain. Neurolmage, 2016, 125, 456-478.	2.1	167
6	Robust whole-brain segmentation: Application to traumatic brain injury. Medical Image Analysis, 2015, 21, 40-58.	7.0	146
7	A review on automatic fetal and neonatal brain MRI segmentation. Neurolmage, 2018, 170, 231-248.	2.1	143
8	Specialization and integration of functional thalamocortical connectivity in the human infant. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6485-6490.	3.3	130
9	Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neurolmage, 2019, 185, 750-763.	2.1	127
10	Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge. Medical Image Analysis, 2015, 20, 135-151.	7.0	85
11	Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project. NeuroImage, 2018, 179, 11-29.	2.1	83
12	The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. Neurolmage, 2020, 223, 117303.	2.1	81
13	Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. Neurolmage, 2019, 185, 764-775.	2.1	73
14	Resting State fMRI in the moving fetus: A robust framework for motion, bias field and spin history correction. Neurolmage, 2014, 101, 555-568.	2.1	60
15	Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery. Scientific Reports, 2017, 7, 15088.	1.6	60
16	Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery. Journal of the American Heart Association, 2019, 8, e009893.	1.6	48
17	Modelling brain development to detect white matter injury in term and preterm born neonates. Brain, 2020, 143, 467-479.	3.7	44
18	Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants. Journal of Pediatrics, 2016, 178, 93-100.e6.	0.9	42

#	Article	IF	CITATIONS
19	Development of Microstructural and Morphological Cortical Profiles in the Neonatal Brain. Cerebral Cortex, 2020, 30, 5767-5779.	1.6	42
20	The Developing Human Connectome Project Neonatal Data Release. Frontiers in Neuroscience, 2022, 16,	1.4	42
21	Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. Neurolmage, 2021, 243, 118488.	2.1	40
22	Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biology, 2020, 18, e3000976.	2.6	38
23	A deformable model for the reconstruction of the neonatal cortex. , 2017, , .		29
24	Corticospinal Tract Injury Precedes Thalamic Volume Reduction in Preterm Infants with Cystic Periventricular Leukomalacia. Journal of Pediatrics, 2015, 167, 260-268.e3.	0.9	22
25	Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts. Cerebral Cortex, 2021, 31, 3665-3677.	1.6	19
26	Increase in Brain Volumes after Implementation of a Nutrition Regimen in Infants Born Extremely Preterm. Journal of Pediatrics, 2020, 223, 57-63.e5.	0.9	17
27	Parental age effects on neonatal white matter development. Neurolmage: Clinical, 2020, 27, 102283.	1.4	12
28	Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Developmental Cognitive Neuroscience, 2022, 54, 101103.	1.9	11
29	Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System. Frontiers in Neuroinformatics, 2017, $11,21$.	1.3	5
30	Geometric Deep Learning for Post-Menstrual Age Prediction Based on the Neonatal White Matter Cortical Surface. Lecture Notes in Computer Science, 2020, , 174-186.	1.0	5
31	CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal MRI. Lecture Notes in Computer Science, 2021, , 221-230.	1.0	2