
Byoung Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11185303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D cell printing of inÂvitro stabilized skin model and inÂvivo pre-vascularized skin patch using tissue-specific extracellular matrixÂbioink: A step towards advanced skin tissue engineering. Biomaterials, 2018, 168, 38-53.	5.7	347
2	Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomaterialia, 2016, 33, 88-95.	4.1	272
3	Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Biomacromolecules, 2017, 18, 1229-1237.	2.6	256
4	Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chemical Reviews, 2020, 120, 10608-10661.	23.0	246
5	Tissue Engineered Bioâ€Bloodâ€Vessels Constructed Using a Tissueâ€Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease. Advanced Functional Materials, 2017, 27, 1700798.	7.8	231
6	Direct 3D cell-printing of human skin with functional transwell system. Biofabrication, 2017, 9, 025034.	3.7	215
7	3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Advanced Healthcare Materials, 2019, 8, e1801019.	3.9	173
8	Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication, 2017, 9, 034104.	3.7	163
9	Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology. Advanced Healthcare Materials, 2018, 7, e1801102.	3.9	119
10	Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Applied Physics Reviews, 2019, 6, .	5.5	92
11	Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials, 2019, 224, 119496.	5.7	90
12	Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 1150-1169.	2.6	86
13	Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials, 2021, 272, 120776.	5.7	55
14	Construction of a Novel In Vitro Atherosclerotic Model from Geometryâ€Tunable Artery Equivalents Engineered via Inâ€Bath Coaxial Cell Printing. Advanced Functional Materials, 2021, 31, 2008878.	7.8	51
15	Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration. Tissue Engineering - Part C: Methods, 2017, 23, 136-145.	1.1	43
16	Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. RSC Advances, 2016, 6, 11546-11553.	1.7	36
17	3D Cell Printing of Tissue/Organ-Mimicking Constructs for Therapeutic and Drug Testing Applications. International Journal of Molecular Sciences, 2020, 21, 7757.	1.8	29
18	Flexible Adiposeâ€Vascular Tissue Assembly Using Combinational 3D Printing for Volumeâ€Stable Soft Tissue Reconstruction. Advanced Healthcare Materials, 2021, 10, e2001693.	3.9	25

BYOUNG SOO KIM

#	Article	IF	CITATIONS
19	Construction of Tissue‣evel Cancerâ€Vascular Model with Highâ€Precision Position Control via In Situ 3D Cell Printing. Small Methods, 2021, 5, e2100072.	4.6	25
20	Engineering Densely Packed Adipose Tissue via Environmentally Controlled Inâ€Bath 3D Bioprinting. Advanced Functional Materials, 2022, 32, .	7.8	13
21	Development of a radiopaque, long-term drug eluting bioresorbable stent for the femoral-iliac artery. RSC Advances, 2019, 9, 34636-34641.	1.7	9
22	Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering. Micromachines, 2022, 13, 155.	1.4	8
23	3D Bioprinting Techniques. , 2019, , 25-29.		7
24	3D Bioprinting. , 2019, , .		5
25	Tissue printing for engineering transplantable human parathyroid patch to improve parathyroid engraftment, integration, and hormone secretion in vivo. Biofabrication, 2021, 13, 035033.	3.7	4
26	Tissue Engineering: Tissue Engineered Bioâ€Bloodâ€Vessels Constructed Using a Tissueâ€Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease (Adv. Funct. Mater. 33/2017). Advanced Functional Materials, 2017, 27, .	7.8	3
27	Various Applications of 3D-Bioprinted Tissues/Organs Using Tissue-Specific Bioinks. , 2019, , 53-108.		1
28	Decellularized Extracellular Matrix-Based Bioinks. , 2019, , 41-51.		1
29	Prevalent Technologies for In Vitro Tissue/Organ Modeling. , 2019, , 13-23.		0