List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11184568/publications.pdf

Version: 2024-02-01

251	29,800 citations	80 h-index	167 g-index
papers	citations	II-IIIQEX	g-index
257 all docs	257 docs citations	257 times ranked	37506 citing authors

#	Article	IF	Citations
1	Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30, 499-511.	9.3	2,113
2	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	38.1	1,709
3	Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011, 63, 24-46.	13.7	1,555
4	Proteinâ^'Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 2011, 111, 5610-5637.	47.7	1,242
5	Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 2016, 11, 986-994.	31.5	1,223
6	Toxicity of nanomaterials. Chemical Society Reviews, 2012, 41, 2323-2343.	38.1	1,221
7	Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011, 166, 8-23.	14.7	1,125
8	Optical sensor arrays for chemical sensing: the optoelectronic nose. Chemical Society Reviews, 2013, 42, 8649.	38.1	760
9	Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chemical Reviews, 2013, 113, 3407-3424.	47.7	643
10	Assessing the In Vitro and In Vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles. Chemical Reviews, 2012, 112, 2323-2338.	47.7	513
11	Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nature Communications, 2017, 8, 777.	12.8	507
12	Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525, 479-485.	27.8	402
13	Magnetic Resonance Imaging Tracking of Stem Cells in Vivo Using Iron Oxide Nanoparticles as a Tool for the Advancement of Clinical Regenerative Medicine. Chemical Reviews, 2011, 111, 253-280.	47.7	385
14	Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opinion on Drug Delivery, 2014, 11, 1449-1470.	5.0	357
15	Protein corona significantly reduces active targeting yield. Chemical Communications, 2013, 49, 2557.	4.1	321
16	Toxicity Evaluations of Superparamagnetic Iron Oxide Nanoparticles: Cell "Vision― <i>versus</i> Physicochemical Properties of Nanoparticles. ACS Nano, 2011, 5, 7263-7276.	14.6	317
17	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	21.0	314
18	Biological Identity of Nanoparticles In Vivo : Clinical Implications of the Protein Corona. Trends in Biotechnology, 2017, 35, 257-264.	9.3	313

#	Article	IF	Citations
19	Effect of Nanoparticles on the Cell Life Cycle. Chemical Reviews, 2011, 111, 3407-3432.	47.7	301
20	Temperature: The "Ignored―Factor at the NanoBio Interface. ACS Nano, 2013, 7, 6555-6562.	14.6	299
21	Silver-Coated Engineered Magnetic Nanoparticles Are Promising for the Success in the Fight against Antibacterial Resistance Threat. ACS Nano, 2012, 6, 2656-2664.	14.6	287
22	A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 75, 300-309.	5.0	264
23	Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano, 2016, 10, 4421-4430.	14.6	264
24	Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials, 2016, 75, 295-304.	11.4	256
25	Engineered nanoparticles for biomolecular imaging. Nanoscale, 2011, 3, 3007.	5.6	246
26	Personalized protein coronas: a "key―factor at the nanobiointerface. Biomaterials Science, 2014, 2, 1210.	5.4	238
27	Optimal Design and Characterization of Superparamagnetic Iron Oxide Nanoparticles Coated with Polyvinyl Alcohol for Targeted Delivery and Imaging. Journal of Physical Chemistry B, 2008, 112, 14470-14481.	2.6	232
28	Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Journal of Controlled Release, 2017, 253, 46-63.	9.9	231
29	Personalized protein corona on nanoparticles and its clinical implications. Biomaterials Science, 2017, 5, 378-387.	5.4	227
30	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	11.1	213
31	Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Advances in Colloid and Interface Science, 2013, 201-202, 18-29.	14.7	212
32	Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today, 2016, 11, 817-832.	11.9	205
33	Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings. Scientific Reports, 2014, 4, 5020.	3.3	204
34	Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale, 2015, 7, 8978-8994.	5.6	199
35	Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale, 2012, 4, 7322.	5.6	197
36	Intracellular Mechanistic Understanding of 2D MoS ₂ Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 2018, 12, 2922-2938.	14.6	188

#	Article	IF	Citations
37	Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chemical Reviews, 2013, 113, 1877-1903.	47.7	187
38	Variation of Protein Corona Composition of Gold Nanoparticles Following Plasmonic Heating. Nano Letters, 2014, 14, 6-12.	9.1	184
39	The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials, 2013, 34, 9048-9055.	11.4	168
40	Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental Science & Emp; Technology, 2013, 47, 130906140819003.	10.0	168
41	Superparamagnetic Iron Oxide Nanoparticles with Rigid Cross-linked Polyethylene Glycol Fumarate Coating for Application in Imaging and Drug Delivery. Journal of Physical Chemistry C, 2009, 113, 8124-8131.	3.1	164
42	Interplay of protein corona and immune cells controls blood residency of liposomes. Nature Communications, 2019, 10, 3686.	12.8	160
43	Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and "Cell Vision― PLoS ONE, 2012, 7, e29997.	2.5	154
44	Protein fibrillation and nanoparticle interactions: opportunities and challenges. Nanoscale, 2013, 5, 2570.	5.6	153
45	Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomaterialia, 2012, 8, 2047-2055.	8.3	151
46	Big Signals from Small Particles: Regulation of Cell Signaling Pathways by Nanoparticles. Chemical Reviews, 2013, 113, 3391-3406.	47.7	146
47	Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 287-307.	3.3	145
48	Debugging Nano–Bio Interfaces: Systematic Strategies to Accelerate Clinical Translation of Nanotechnologies. Trends in Biotechnology, 2018, 36, 755-769.	9.3	145
49	Protein corona change the drug release profile of nanocarriers: The "overlooked―factor at the nanobio interface. Colloids and Surfaces B: Biointerfaces, 2014, 123, 143-149.	5.0	144
50	Cell "vision― complementary factor of protein corona in nanotoxicology. Nanoscale, 2012, 4, 5461.	5.6	143
51	Protein corona: Opportunities and challenges. International Journal of Biochemistry and Cell Biology, 2016, 75, 143-147.	2.8	143
52	Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Multiple Sclerosis. ACS Chemical Neuroscience, 2011, 2, 118-140.	3.5	141
53	Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. Chemical Reviews, 2017, 117, 7428-7456.	47.7	141
54	Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomaterials Science, 2015, 3, 265-278.	5.4	133

#	Article	IF	Citations
55	Influence of the Physiochemical Properties of Superparamagnetic Iron Oxide Nanoparticles on Amyloid \hat{l}^2 Protein Fibrillation in Solution. ACS Chemical Neuroscience, 2013, 4, 475-485.	3.5	132
56	Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties. ACS Nano, 2016, 10, 3723-3737.	14.6	130
57	Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 9573-9580.	3.1	128
58	Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circulation Research, 2017, 121, e22-e36.	4.5	124
59	Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology. Trends in Biotechnology, 2017, 35, 937-953.	9.3	121
60	Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. Nano Letters, 2017, 17, 4427-4435.	9.1	119
61	A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Analytica Chimica Acta, 2015, 882, 58-67.	5.4	114
62	Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale, 2011, 3, 1127-38.	5.6	112
63	The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum. International Journal of Biochemistry and Cell Biology, 2016, 75, 188-195.	2.8	112
64	An <i>in vitro</i> study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology, 2009, 20, 225104.	2.6	110
65	Cell-Imprinted Substrates Direct the Fate of Stem Cells. ACS Nano, 2013, 7, 8379-8384.	14.6	110
66	Superparamagnetic iron oxide nanoparticles for <i>in vivo</i> molecular and cellular imaging. Contrast Media and Molecular Imaging, 2015, 10, 329-355.	0.8	109
67	Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale, 2015, 7, 5004-5013.	5.6	107
68	Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chemical Research in Toxicology, 2012, 25, 1231-1242.	3.3	106
69	Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale, 2014, 6, 11439-11450.	5.6	106
70	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	31.5	104
71	Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chemistry of Materials, 2017, 29, 6578-6595.	6.7	99
72	Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale, 2013, 5, 8656.	5.6	98

#	Article	IF	CITATIONS
73	Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine, 2015, 10, 215-226.	3.3	96
74	Protein-Nanoparticle Interactions. Springer Series in Biophysics, 2013, , .	0.4	93
75	Nanostructures: a platform for brain repair and augmentation. Frontiers in Systems Neuroscience, 2014, 8, 91.	2.5	92
76	Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors. ACS Applied Materials & Interfaces, 2016, 8, 22808-22818.	8.0	92
77	Multiphysics Flow Modeling and in Vitro Toxicity of Iron Oxide Nanoparticles Coated with Poly(vinyl) Tj ETQq1 1 C).784314 3.1	rgßŢ Overlo
78	Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 2012, 48, 5647.	4.1	91
79	Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Applied Surface Science, 2014, 301, 338-345.	6.1	88
80	Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Nano, 2018, 12, 2253-2266.	14.6	87
81	Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Molecular Pharmaceutics, 2021, 18, 550-575.	4.6	84
82	Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna Journal of Medical Biotechnology, 2019, 11, 3-23.	0.3	83
83	Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thrombosis and Haemostasis, 2014, 112, 518-530.	3.4	82
84	Nanoparticle and Protein Corona. Springer Series in Biophysics, 2013, , 21-44.	0.4	76
85	Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures, 2017, 1, 015004.	2.2	75
86	Impact of Gold Nanoparticles on Amyloid β-Induced Alzheimer's Disease in a Rat Animal Model: Involvement of STIM Proteins. ACS Chemical Neuroscience, 2019, 10, 2299-2309.	3.5	74
87	Significance of cell "observer―and protein source in nanobiosciences. Journal of Colloid and Interface Science, 2013, 392, 431-445.	9.4	73
88	Cell-Imprinted Substrates Act as an Artificial Niche for Skin Regeneration. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13280-13292.	8.0	70
89	Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine, 2015, 10, 2931-2952.	3.3	70
90	Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Advances, 2013, 3, 1119-1126.	3.6	69

#	Article	IF	CITATIONS
91	Label-free detection of \hat{l}^2 -amyloid peptides (\hat{Al}^2 40 and \hat{Al}^2 42): a colorimetric sensor array for plasma monitoring of Alzheimer's disease. Nanoscale, 2018, 10, 6361-6368.	5.6	68
92	Disease-specific protein corona sensor arrays may have disease detection capacity. Nanoscale Horizons, 2019, 4, 1063-1076.	8.0	68
93	Regulation of stem cell fate by nanomaterial substrates. Nanomedicine, 2015, 10, 829-847.	3.3	65
94	Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 367-90.	0.4	65
95	Hard corona composition and cellular toxicities of the graphene sheets. Colloids and Surfaces B: Biointerfaces, 2013, 109, 212-218.	5.0	64
96	Targeted Nanotherapeutics Encapsulating Liver X Receptor Agonist GW3965 Enhance Antiatherogenic Effects without Adverse Effects on Hepatic Lipid Metabolism in <i>Ldlr^{â^'/â^'}</i> Mice. Advanced Healthcare Materials, 2017, 6, 1700313.	7.6	63
97	Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnology Advances, 2014, 32, 679-692.	11.7	62
98	Disease-related metabolites affect protein–nanoparticle interactions. Nanoscale, 2018, 10, 7108-7115.	5.6	61
99	Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nature Communications, 2021, 12, 573.	12.8	61
100	Physiological Temperature Has a Crucial Role in Amyloid Beta in the Absence and Presence of Hydrophobic and Hydrophilic Nanoparticles. ACS Chemical Neuroscience, 2013, 4, 375-378.	3.5	59
101	Identification of catecholamine neurotransmitters using fluorescence sensor array. Analytica Chimica Acta, 2016, 917, 85-92.	5.4	58
102	Synthesis, surface architecture and biological response of superparamagnetic iron oxide nanoparticles for application in drug delivery: a review. International Journal of Biomedical Nanoscience and Nanotechnology, 2010, 1, 164.	0.1	57
103	Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles. Nanoscale, 2013, 5, 3240.	5.6	57
104	Protein Corona Influences Cell–Biomaterial Interactions in Nanostructured Tissue Engineering Scaffolds. Advanced Functional Materials, 2015, 25, 4379-4389.	14.9	57
105	Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials, 2017, 146, 168-182.	11.4	57
106	Superparamagnetic colloidal nanocrystalclusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale, 2011, 3, 1022-1030.	5.6	56
107	Identification of Nanoparticles with a Colorimetric Sensor Array. ACS Sensors, 2016, 1, 17-21.	7.8	55
108	Probing fibronectin conformation on a protein corona layer around nanoparticles. Nanoscale, 2018, 10, 1228-1233.	5.6	55

#	Article	IF	Citations
109	Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts, 2016, 6, 111-115.	1.5	55
110	Cytotoxicity and Cell Cycle Effects of Bare and Poly(vinyl alcohol) oated Iron Oxide Nanoparticles in Mouse Fibroblasts. Advanced Engineering Materials, 2009, 11, B243.	3. 5	54
111	Brain Targeting by Liposome–Biomolecular Corona Boosts Anticancer Efficacy of Temozolomide in Glioblastoma Cells. ACS Chemical Neuroscience, 2018, 9, 3166-3174.	3.5	53
112	Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation. ACS Applied Materials & Differentiaces, 2016, 8, 13777-13784.	8.0	52
113	Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells. Applied Surface Science, 2014, 320, 596-601.	6.1	51
114	Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and α-Synuclein. ACS Nano, 2019, 13, 3243-3256.	14.6	51
115	Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel-graphene sheets against cancer. RSC Advances, 2014, 4, 62557-62565.	3.6	50
116	Monoclonal antibody conjugated magnetic nanoparticles could target MUCâ€1â€positive cells ⟨i⟩in vitro⟨/i⟩ but not ⟨i⟩in vivo⟨/i⟩. Contrast Media and Molecular Imaging, 2015, 10, 225-236.	0.8	50
117	A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II). Sensors and Actuators B: Chemical, 2018, 259, 894-899.	7.8	50
118	Large Protein Absorptions from Small Changes on the Surface of Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 18275-18283.	3.1	49
119	Direct Evaluation of Myocardial Viability and Stem Cell Engraftment Demonstrates Salvage of the Injured Myocardium. Circulation Research, 2015, 116, e40-50.	4.5	49
120	Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles. Scientific Reports, 2012, 2, 868.	3.3	48
121	Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease. RSC Advances, 2012, 2, 5008.	3.6	48
122	The Protein Corona Mediates the Impact of Nanomaterials and Slows Amyloid Beta Fibrillation. ChemBioChem, 2013, 14, 568-572.	2.6	48
123	Zeolite Nanoparticles Inhibit Aβ–Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS Applied Materials & Structural Clot. ACS	8.0	47
124	Sex as an important factor in nanomedicine. Nature Communications, 2021, 12, 2984.	12.8	47
125	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chemical Reviews, 2019, 119, 11352-11390.	47.7	46
126	Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10.	11.9	45

#	Article	IF	CITATIONS
127	[Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. Biomaterials, 2015, 37, 289-298.	11.4	44
128	Bioengineering cardiac constructs using 3D printing. Journal of 3D Printing in Medicine, 2017, 1, 123-139.	2.0	44
129	On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine, 2015, 10, 3431-3449.	3.3	43
130	Engineering of Mature Human Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes Using Substrates with Multiscale Topography. Advanced Functional Materials, 2018, 28, 1707378.	14.9	43
131	Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Scientific Reports, 2018, 8, 12557.	3.3	43
132	The need for robust characterization of nanomaterials for nanomedicine applications. Nature Communications, 2021, 12, 5246.	12.8	43
133	The need for improved methodology in protein corona analysis. Nature Communications, 2022, 13, 49.	12.8	43
134	Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy, 2017, 9, 819-835.	2.0	41
135	Multifunctional stable fluorescent magnetic nanoparticles. Chemical Communications, 2012, 48, 3957.	4.1	40
136	Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems. Journal of Materials Chemistry, 2011, 21, 18686.	6.7	39
137	Misinterpretation in Nanotoxicology: A Personal Perspective. Chemical Research in Toxicology, 2016, 29, 943-948.	3.3	38
138	Sensing of Alzheimer's Disease and Multiple Sclerosis Using Nano-Bio Interfaces. Journal of Alzheimer's Disease, 2017, 59, 1187-1202.	2.6	38
139	An engineered cell-imprinted substrate directs osteogenic differentiation in stem cells. Biomaterials Science, 2018, 6, 189-199.	5.4	38
140	Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends in Pharmacological Sciences, 2020, 41, 641-652.	8.7	38
141	Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. Advanced Science, 2021, 8, e2100556.	11.2	38
142	Synthesis and in Vitro Evaluation of Bone-Seeking Superparamagnetic Iron Oxide Nanoparticles as Contrast Agents for Imaging Bone Metabolic Activity. ACS Applied Materials & Interfaces, 2013, 5, 5219-5226.	8.0	37
143	Determination of nanoparticles using UV-Vis spectra. Nanoscale, 2015, 7, 5134-5139.	5.6	37
144	Cardiovascular tissue bioprinting: Physical and chemical processes. Applied Physics Reviews, 2018, 5, 041106.	11.3	36

#	Article	IF	Citations
145	<p>Opportunities and Challenges of the Management of Chronic Wounds: A Multidisciplinary Viewpoint</p> . Chronic Wound Care Management and Research, 0, Volume 7, 27-36.	0.4	36
146	Antibody orientation determines corona mistargeting capability. Nature Nanotechnology, 2018, 13, 775-776.	31.5	35
147	Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine, 2019, 14, 2987-3006.	3.3	35
148	Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes. Scientific Reports, 2016, 6, 26960.	3.3	33
149	Development of a Virtual Cell Model to Predict Cell Response to Substrate Topography. ACS Nano, 2017, 11, 9084-9092.	14.6	33
150	STEM the bullying: An empirical investigation of abusive supervision in academic science. EClinicalMedicine, 2021, 40, 101121.	7.1	33
151	In Vivo Tracking of Tissue Engineered Constructs. Micromachines, 2019, 10, 474.	2.9	32
152	Detection and Discrimination of Bacterial Colonies with Mueller Matrix Imaging. Scientific Reports, 2018, 8, 10815.	3.3	31
153	Mapping the heterogeneity of protein corona by <i>ex vivo</i> magnetic levitation. Nanoscale, 2020, 12, 2374-2383.	5.6	31
154	Magnetic Levitation Systems for Disease Diagnostics. Trends in Biotechnology, 2021, 39, 311-321.	9.3	31
155	Effect of Cell Age on Uptake and Toxicity of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39672-39687.	8.0	30
156	Synthesis of new hybrid nanomaterials: promising systems for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 806-817.	3.3	29
157	Time-Resolved Visual Chiral Discrimination of Cysteine Using Unmodified CdTe Quantum Dots. Scientific Reports, 2017, 7, 890.	3.3	29
158	Biomaterial approaches for cardiovascular tissue engineering. Emergent Materials, 2019, 2, 193-207.	5.7	29
159	The Protein Corona around Nanoparticles Facilitates Stem Cell Labeling for Clinical MR Imaging. Radiology, 2018, 286, 938-947.	7.3	27
160	Magnetically Levitated Plasma Proteins. Analytical Chemistry, 2020, 92, 1663-1668.	6.5	27
161	Protein corona: The golden gate to clinical applications of nanoparticles. International Journal of Biochemistry and Cell Biology, 2016, 75, 141-142.	2.8	25
162	Exploitation of nanoparticle-protein interactions for early disease detection. Applied Physics Letters, 2019, 114, 163702.	3.3	25

#	Article	IF	Citations
163	Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery. RSC Advances, 2012, 2, 5221.	3.6	23
164	Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods. Applied Materials Today, 2019, 15, 599-604.	4.3	23
165	Impact of plasma concentration of transferrin on targeting capacity of nanoparticles. Nanoscale, 2020, 12, 4935-4944.	5.6	23
166	Synthesis of a solar photo and bioactive CNT–TiO2 nanocatalyst. RSC Advances, 2013, 3, 18529.	3.6	22
167	Placenta-specific1 (PLAC1) is a potential target for antibody-drug conjugate-based prostate cancer immunotherapy. Scientific Reports, 2017, 7, 13373.	3.3	22
168	Nanoparticleâ€biomolecular corona: A new approach for the early detection of nonâ€smallâ€ɛell lung cancer. Journal of Cellular Physiology, 2019, 234, 9378-9386.	4.1	22
169	Evolving Magnetically Levitated Plasma Proteins Detects Opioid Use Disorder as a Model Disease. Advanced Healthcare Materials, 2020, 9, 1901608.	7.6	22
170	3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration. Polymers, 2021, 13, 1099.	4.5	22
171	Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces. Journal of Colloid and Interface Science, 2018, 531, 245-252.	9.4	21
172	Molecular interaction of fibrinogen with zeolite nanoparticles. Scientific Reports, 2019, 9, 1558.	3.3	21
173	The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Advanced Drug Delivery Reviews, 2021, 174, 337-347.	13.7	21
174	Synergistic Analysis of Protein Corona and Haemoglobin Levels Detects Pancreatic Cancer. Cancers, 2021, 13, 93.	3.7	21
175	Use of bio-mimetic three-dimensional technology in therapeutics for heart disease. Bioengineered, 2014, 5, 193-197.	3.2	20
176	Engineering the Nanoparticle-Protein Interface for Cancer Therapeutics. Cancer Treatment and Research, 2015, 166, 245-273.	0.5	20
177	Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287, 119-127.	1.5	19
178	Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics, 2018, 8, 6008-6024.	10.0	19
179	Emerging Biomolecular Testing to Assess the Risk of Mortality from COVID-19 Infection. Molecular Pharmaceutics, 2021, 18, 476-482.	4.6	19
180	4D Printing of Actuating Cardiac Tissue. , 2018, , 153-162.		18

#	Article	IF	Citations
181	Development of anti-CD47 single-chain variable fragment targeted magnetic nanoparticles for treatment of human bladder cancer. Nanomedicine, 2017, 12, 597-613.	3.3	17
182	Effect of molecular crowding on the biological identity of liposomes: an overlooked factor at the bio-nano interface. Nanoscale Advances, 2019, 1, 2518-2522.	4.6	17
183	A protein corona sensor array detects breast and prostate cancers. Nanoscale, 2020, 12, 16697-16704.	5.6	17
184	Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds with a Multifunctional Wound Dressing. Molecular Pharmaceutics, 2021, 18, 3171-3180.	4.6	17
185	Serum Multivalent Cationic Pattern: Speculation on the Efficient Approach for Detection of Alzheimer's Disease. Scientific Reports, 2013, 3, 2782.	3.3	16
186	Improve reporting systems for academic bullying. Nature, 2018, 562, 494-494.	27.8	16
187	Immunoengineering in glioblastoma imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1575.	6.1	16
188	Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications. Nanotechnology, 2012, 23, 045102.	2.6	15
189	Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids and Surfaces B: Biointerfaces, 2013, 103, 652-657.	5.0	15
190	Cancer immunotherapy: Wound-bound checkpoint blockade. Nature Biomedical Engineering, 2017, 1, .	22.5	15
191	Filling the Space: A Framework for Coordinated Global Actions To Diminish Academic Bullying. Angewandte Chemie - International Edition, 2021, 60, 3338-3344.	13.8	15
192	Raman active jagged-shaped gold-coated magnetic particles as a novel multimodal nanoprobe. Chemical Communications, 2011, 47, 10404.	4.1	14
193	Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. Journal of Controlled Release, 2022, 349, 143-155.	9.9	14
194	A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity. Nanoscale, 2015, 7, 1879-1887.	5.6	13
195	Representation of women among scientific Nobel Prize nominees. Lancet, The, 2019, 394, 1905-1906.	13.7	13
196	Effect of cell imprinting on viability and drug susceptibility of breast cancer cells to doxorubicin. Acta Biomaterialia, 2020, 113, 119-129.	8.3	13
197	Filling the Space: A Framework for Coordinated Global Actions To Diminish Academic Bullying. Angewandte Chemie, 2021, 133, 3378-3384.	2.0	13
198	Development of functional hybrid scaffolds for wound healing applications. IScience, 2022, 25, 104019.	4.1	13

#	Article	IF	Citations
199	Is Amyloid- \hat{l}^2 an Innocent Bystander and Marker in Alzheimer's Disease? Is the Liability of Multivalent Cation Homeostasis and its Influence on Amyloid- \hat{l}^2 Function the Real Mechanism?. Journal of Alzheimer's Disease, 2014, 42, 69-85.	2.6	12
200	Nanoparticles-induced inflammatory cytokines in human plasma concentration manner: an ignored factor at the nanobio-interface. Journal of the Iranian Chemical Society, 2015, 12, 317-323.	2.2	12
201	Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction. Radiology, 2016, 280, 815-825.	7.3	12
202	Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging. Radiology, 2016, 280, 826-836.	7. 3	12
203	A survivor's guide to academic bullying. Nature Human Behaviour, 2020, 4, 1091-1091.	12.0	12
204	Optimal centrifugal isolating of liposome–protein complexes from human plasma. Nanoscale Advances, 2021, 3, 3824-3834.	4.6	12
205	The File Drawer Problem in Nanomedicine. Trends in Biotechnology, 2021, 39, 425-427.	9.3	12
206	Effect of Glucose on Liposome–Plasma Protein Interactions: Relevance for the Physiological Response of Clinically Approved Liposomal Formulations. Advanced Biology, 2019, 3, e1800221.	3.0	11
207	COVID-19: Nanomedicine Uncovers Blood-Clot Mystery. Journal of Proteome Research, 2020, 19, 4364-4373.	3.7	11
208	Protein corona profile of graphene oxide allows detection of glioblastoma multiforme using a simple one-dimensional gel electrophoresis technique: a proof-of-concept study. Biomaterials Science, 2021, 9, 4671-4678.	5.4	11
209	The Possible Role of Sex As an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine. Molecular Pharmaceutics, 2021, 18, 2448-2453.	4.6	11
210	A study of starch addition on burst effect and diameter of polyurethane microspheres containing theophylline. Polymers for Advanced Technologies, 2008, 19, 167-170.	3.2	10
211	A mechanistic explanation of the inhibitory role of the protein corona on liposomal gene expression. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183159.	2.6	10
212	Biomedical Applications of Superparamagnetic Nanoparticles in Molecular Scale. Current Organic Chemistry, 2015, 19, 982-990.	1.6	10
213	Global warming and neurodegenerative disorders: speculations on their linkage. BioImpacts, 2014, 4, 167-170.	1.5	9
214	Tie institutions' reputations to their anti-bullying record. Nature, 2019, 572, 439-439.	27.8	9
215	A Healthier Peer Review Process Would Improve Diversity. ACS Applied Materials & 2020, 12, 40987-40989.	8.0	9
216	Academic bullying: How to be an ally. Science, 2021, 373, 974-974.	12.6	9

#	Article	IF	Citations
217	The urgent need for modification of scientific ranking indexes to facilitate scientific progress and diminish academic bullying. BioImpacts, 2020, 10, 5-7.	1.5	9
218	COVID-19 pandemic may fuel academic bullying. BioImpacts, 2020, 10, 139-140.	1.5	9
219	Laser irradiation affects the biological identity and cellular uptake of plasmonic nanoparticles. Nanoscale, 2019, 11, 5974-5981.	5.6	8
220	Interdependency of influential parameters in therapeutic nanomedicine. Expert Opinion on Drug Delivery, 2021, 18, 1379-1394.	5.0	8
221	Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chemical Neuroscience, 2018, 9, 2288-2298.	3.5	7
222	Flat Cell Culturing Surface May Cause Misinterpretation of Cellular Uptake of Nanoparticles. Advanced Biology, 2018, 2, 1800046.	3.0	7
223	The need for a global committee on academic behaviour ethics. Lancet, The, 2019, 394, 1410.	13.7	7
224	Protein fibrillation and the olfactory system: speculations on their linkage. Trends in Biotechnology, 2012, 30, 609-610.	9.3	6
225	Nanoparticles affect bacterial colonies' optical diffraction patterns. Nanoscale, 2019, 11, 2594-2601.	5.6	6
226	Magnetic levitation: a physical tool to measure the density of unknown diamagnetic materials. Physics Education, 2021, 56, 055020.	0.5	6
227	Stretch Induces Invasive Phenotypes in Breast Cells Due to Activation of Aerobicâ€Glycolysisâ€Related Pathways. Advanced Biology, 2019, 3, e1800294.	3.0	5
228	Function of arteries and veins in conditions of simulated cardiac arrest. BioImpacts, 2021, 11, 157-164.	1.5	5
229	Can the biomolecular corona induce an allergic reaction?—A proof-of-concept study. Biointerphases, 2021, 16, 011008.	1.6	5
230	Protein Corona: Applications and Challenges. Springer Series in Biophysics, 2013, , 45-63.	0.4	4
231	Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides. Neuropeptides, 2016, 57, 71-83.	2.2	4
232	Disrupting targets' dependency on bullies. Science, 2022, 375, 1239-1239.	12.6	4
233	Analytical Methods for Corona Evaluations. Springer Series in Biophysics, 2013, , 65-82.	0.4	3
234	Implications of Biomolecular Corona for Molecular Imaging. Molecular Imaging and Biology, 2021, 23, 1-10.	2.6	3

#	Article	IF	CITATIONS
235	In situ monitoring of photo-crosslinking reaction of water-soluble bifunctional macromers using magnetic levitation. Analytica Chimica Acta, 2022, 1195, 339369.	5.4	3
236	Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts. Nanotechnology, 2015, 26, 060501.	2.6	2
237	Future Perspective on the Smart Delivery of Biomolecules. From Biomaterials Towards Medical Devices, 2018, , 363-371.	0.0	2
238	The absence of legal remedies following academic bullying. BioImpacts, 2020, 10, 63-64.	1.5	2
239	Academic harassment: The need for interdependent actions of stakeholders. EClinicalMedicine, 2022, 49, 101481.	7.1	2
240	Ischemic cardiomyopathy. , 2020, , 1-8.		1
241	Gender parity among the Altmetric Top 100 publications on COVID-19. Future Science OA, 2021, 7, FSO651.	1.9	1
242	Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells. PLoS ONE, 2018, 13, e0192662.	2.5	1
243	Molecular changes in obese and depressive patients are similar to neurodegenerative disorders. Iranian Journal of Neurology, 2017, 16, 192-200.	0.5	1
244	Nanobiomaterial Advances in Cardiovascular Tissue Engineering. , 2019, , 79-106.		0
245	Atherosclerosis and thrombosis heart failure. , 2020, , 23-42.		0
246	Device-based treatment of heart failure. , 2020, , 43-46.		0
247	Clinical cardiovascular medicine and lessons learned from cancer nanotechnology. , 2020, , 187-195.		0
248	Academic Incivility: What Can I Do?. SSRN Electronic Journal, 0, , .	0.4	0
249	Learn from the Nobel Prize Committee: Remove the nominee from the process. BioImpacts, 2021, 11, 235-235.	1.5	0
250	On the issue of transparency on the internal investigation of academic bullying. BioImpacts, 2021, 12, 1-2.	1.5	0
251	Amyloid-based therapies did fail again! It is the right time to change our vision on building block of Alzheimer's disease. Iranian Journal of Neurology, 2014, 13, 48-9.	0.5	0