Johanna Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11184331/publications.pdf Version: 2024-02-01

		23879	35168
115	11,074	60	102
papers	citations	h-index	g-index
121	121	121	8157
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adaptive significance of flowering time variation across natural seasonal environments in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 234, 719-734.	3.5	7
2	Germination timing and chilling exposure create contingency in life history and influence fitness in the native wildflower <i>Streptanthus tortuosus</i> . Journal of Ecology, 2020, 108, 239-255.	1.9	27
3	Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. American Journal of Botany, 2020, 107, 350-363.	0.8	31
4	Functional variants of <i>DOG1</i> control seed chilling responses and variation in seasonal life-history strategies in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2526-2534.	3.3	60
5	Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17890-17899.	3.3	35
6	Evidence for population differentiation among Jeffrey and Ponderosa pines in survival, growth and phenology. Forest Ecology and Management, 2019, 434, 40-48.	1.4	15
7	Phenological and fitness responses to climate warming depend upon genotype and competitive neighbourhood in <i>Arabidopsis thaliana</i> . Functional Ecology, 2019, 33, 308-322.	1.7	9
8	The seasonal climate niche predicts phenology and distribution of an ephemeral annual plant, <i>Mollugo verticillata</i> . Journal of Ecology, 2017, 105, 1323-1334.	1.9	31
9	Evolution caused by extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160146.	1.8	170
10	Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental <i>Arabidopsis thaliana</i> populations over multiple generations in the field. New Phytologist, 2017, 216, 291-302.	3.5	23
11	Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in <i>Arabidopsis thaliana</i> . New Phytologist, 2016, 210, 564-576.	3.5	33
12	Predicting the evolutionary dynamics of seasonal adaptation to novel climates in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2812-21.	3.3	62
13	The role of climate adaptation in colonization success in <i>Arabidopsis thaliana</i> . Molecular Ecology, 2015, 24, 2253-2263.	2.0	46
14	Modeling the Influence of Genetic and Environmental Variation on the Expression of Plant Life Cycles across Landscapes. American Naturalist, 2015, 185, 212-227.	1.0	94
15	Applying developmental threshold models to evolutionary ecology. Trends in Ecology and Evolution, 2015, 30, 66-77.	4.2	50
16	Lagging adaptation to warming climate in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7906-7913.	3.3	157
17	Multiple <i>FLC</i> haplotypes defined by independent <i>cis</i> -regulatory variation underpin life history diversity in <i>Arabidopsis thaliana</i> . Genes and Development, 2014, 28, 1635-1640.	2.7	122
18	Paths to selection on life history loci in different natural environments across the native range of <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Ecology, 2013, 22, 3552-3566.	2.0	101

JOHANNA SCHMITT

#	Article	IF	CITATIONS
19	Co-Variation between Seed Dormancy, Growth Rate and Flowering Time Changes with Latitude in Arabidopsis thaliana. PLoS ONE, 2013, 8, e61075.	1.1	130
20	An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytologist, 2012, 194, 654-665.	3.5	57
21	Early Developmental Responses to Seedling Environment Modulate Later Plasticity to Light Spectral Quality. PLoS ONE, 2012, 7, e34121.	1.1	6
22	Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in <i>Arabidopsis thaliana</i> . Ecology Letters, 2012, 15, 769-777.	3.0	115
23	Testing mechanisms and context dependence of costs of plastic shade avoidance responses in <i>Impatiens capensis</i> (Balsaminaceae). American Journal of Botany, 2011, 98, 1602-1612.	0.8	6
24	ACROSS-ENVIRONMENT GENETIC CORRELATIONS AND THE FREQUENCY OF SELECTIVE ENVIRONMENTS SHAPE THE EVOLUTIONARY DYNAMICS OF GROWTH RATE IN IMPATIENS CAPENSIS. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	1.1	38
25	The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy. Molecular Ecology, 2010, 19, 1335-1351.	2.0	156
26	Effects of Genetic Perturbation on Seasonal Life History Plasticity. Science, 2009, 323, 930-934.	6.0	340
27	Distinct Patterns of Genetic Variation Alter Flowering Responses of Arabidopsis Accessions to Different Daylengths. Plant Physiology, 2009, 152, 177-191.	2.3	26
28	Polymorphic Genes of Major Effect: Consequences for Variation, Selection and Evolution in <i>Arabidopsis thaliana</i> . Genetics, 2009, 182, 911-922.	1.2	28
29	PARTITIONING ADAPTIVE DIFFERENTIATION ACROSS A PATCHY LANDSCAPE: SHADE AVOIDANCE TRAITS IN <i>IN <i>IN PATIENS CAPENSIS </i>. Evolution; International Journal of Organic Evolution, 2008, 62, 654-667.</i>	1.1	32
30	A latitudinal cline and response to vernalization in leaf angle and morphology in <i>Arabidopsis thaliana</i> (Brassicaceae). New Phytologist, 2008, 179, 155-164.	3.5	60
31	Maternal Effects and Germination Timing Mediate the Expression of Winter and Spring Annual Life Histories in Arabidopsis thaliana. International Journal of Plant Sciences, 2007, 168, 205-214.	0.6	22
32	Maternal effects of drought stress and inbreeding in <i>Impatiens capensis</i> (Balsaminaceae). American Journal of Botany, 2007, 94, 1984-1991.	0.8	31
33	Fitness Effects Associated with the Major Flowering Time Gene FRIGIDA in Arabidopsis thaliana in the Field. American Naturalist, 2007, 169, E141-E157.	1.0	151
34	Ecosystem engineers as selective agents: the effects of leaf litter on emergence time and early growth in Impatiens capensis. Ecology Letters, 2006, 9, 258-270.	3.0	28
35	Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature, 2006, 441, 947-952.	13.7	371
36	ENVIRONMENTAL AND GENETIC INFLUENCES ON THE GERMINATION OF ARABIDOPSIS THALLANA IN THE FIELD. Evolution; International Journal of Organic Evolution, 2005, 59, 740-757.	1.1	120

#	Article	IF	CITATIONS
37	THE EVOLUTIONARY ECOLOGY OF SEED GERMINATION OF ARABIDOPSIS THALIANA: VARIABLE NATURAL SELECTION ON GERMINATION TIMING. Evolution; International Journal of Organic Evolution, 2005, 59, 758-770.	1.1	215
38	NICHE CONSTRUCTION THROUGH GERMINATION CUEING: LIFE-HISTORY RESPONSES TO TIMING OF GERMINATION IN ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2005, 59, 771-785.	1.1	99
39	Vernalization sensitivity in <i>Arabidopsis thaliana</i> (Brassicaceae): the effects of latitude and FLC variation. American Journal of Botany, 2005, 92, 1701-1707.	0.8	56
40	ENVIRONMENTAL AND GENETIC INFLUENCES ON THE GERMINATION OF ARABIDOPSIS THALIANA IN THE FIELD. Evolution; International Journal of Organic Evolution, 2005, 59, 740.	1.1	47
41	THE EVOLUTIONARY ECOLOGY OF SEED GERMINATION OF ARABIDOPSIS THALIANA: VARIABLE NATURAL SELECTION ON GERMINATION TIMING. Evolution; International Journal of Organic Evolution, 2005, 59, 758.	1.1	24
42	Testing for stressâ€dependent inbreeding depression in <i>Impatiens capensis</i> (Balsaminaceae). American Journal of Botany, 2005, 92, 1322-1329.	0.8	22
43	Physiological mechanism of population differentiation in shadeâ€avoidance responses between woodland and clearing genotypes of <i>Impatiens capensis</i> . American Journal of Botany, 2005, 92, 868-874.	0.8	27
44	Population differentiation and genetic variation inform translocation decisions for Liatris scariosa var. novae-angliae, a rare New England grassland perennial. Biological Conservation, 2005, 124, 155-167.	1.9	23
45	Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution; International Journal of Organic Evolution, 2005, 59, 740-57.	1.1	118
46	The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution; International Journal of Organic Evolution, 2005, 59, 758-70.	1.1	88
47	Niche construction through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana. Evolution; International Journal of Organic Evolution, 2005, 59, 771-85.	1.1	33
48	Frequency and Microenvironmental Pattern of Selection on Plastic Shadeâ€Avoidance Traits in a Natural Population ofImpatiens capensis. American Naturalist, 2004, 163, 548-563.	1.0	92
49	Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15670-15675.	3.3	336
50	TESTING ADAPTIVE PLASTICITY TO UV: COSTS AND BENEFITS OF STEM ELONGATION AND LIGHT-INDUCED PHENOLICS. Evolution; International Journal of Organic Evolution, 2004, 58, 2645.	1.1	2
51	Environmental Effects on the Expression of Quantitative Trait Loci and Implications for Phenotypic Evolution. BioScience, 2004, 54, 627.	2.2	43
52	A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4712-4717.	3.3	458
53	Linkage Disequilibrium Mapping of Arabidopsis CRY2 Flowering Time AllelesSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY576055, AY576271 Genetics, 2004, 167, 1361-1369.	1.2	106
54	TESTING ADAPTIVE PLASTICITY TO UV: COSTS AND BENEFITS OF STEM ELONGATION AND LIGHT-INDUCED PHENOLICS. Evolution; International Journal of Organic Evolution, 2004, 58, 2645-2656.	1.1	40

JOHANNA SCHMITT

#	Article	IF	CITATIONS
55	Natural selection on light response curve parameters in the herbaceous annual, Impatiens capensis. Oecologia, 2004, 139, 487-494.	0.9	36
56	QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. Molecular Ecology, 2003, 12, 1153-1163.	2.0	85
57	EVOLUTIONARY GENETICS OF RESISTANCE AND TOLERANCE TO NATURAL HERBIVORY IN ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2003, 57, 1270-1280.	1.1	98
58	EVOLUTIONARY GENETICS OF RESISTANCE AND TOLERANCE TO NATURAL HERBIVORY IN ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2003, 57, 1270.	1.1	8
59	The Adaptive Evolution of Plasticity: Phytochrome-Mediated Shade Avoidance Responses. Integrative and Comparative Biology, 2003, 43, 459-469.	0.9	178
60	Dispersal biology of <i>Liatris scariosa</i> var. <i>novaeâ€angliae</i> (Asteraceae), a rare New England grassland perennial. American Journal of Botany, 2003, 90, 1159-1167.	0.8	34
61	Heterogeneous Selection at Specific Loci in Natural Environments in <i>Arabidopsis thaliana</i> . Genetics, 2003, 165, 321-329.	1.2	119
62	Population Differentiation and Natural Selection for Waterâ€Use Efficiency in Impatiens capensis (Balsaminaceae). International Journal of Plant Sciences, 2002, 163, 907-912.	0.6	131
63	Novel Loci Control Variation in Reproductive Timing in <i>Arabidopsis thaliana</i> in Natural Environments. Genetics, 2002, 162, 1875-1884.	1.2	144
64	ADAPTIVE DIVERGENCE IN PLASTICITY IN NATURAL POPULATIONS OF IMPATIENS CAPENSIS AND ITS CONSEQUENCES FOR PERFORMANCE IN NOVEL HABITATS. Evolution; International Journal of Organic Evolution, 2001, 55, 692.	1.1	143
65	Susceptibility to UV damage in Impatiens capensis (Balsaminaceae): testing for opportunity costs to shadeâ€avoidance and population differentiation. American Journal of Botany, 2001, 88, 1401-1408.	0.8	35
66	The effect of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 2001, 88, 1240-1249.	0.8	117
67	ADAPTIVE DIVERGENCE IN PLASTICITY IN NATURAL POPULATIONS OF IMPATIENS CAPENSIS AND ITS CONSEQUENCES FOR PERFORMANCE IN NOVEL HABITATS. Evolution; International Journal of Organic Evolution, 2001, 55, 692-702.	1.1	23
68	EVIDENCE OF ADAPTIVE DIVERGENCE IN PLASTICITY: DENSITY- AND SITE-DEPENDENT SELECTION ON SHADE-AVOIDANCE RESPONSES IN IMPATIENS CAPENSIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1956-1968.	1.1	187
69	DENSITY DEPENDENCE AND POPULATION DIFFERENTIATION OF GENETIC ARCHITECTURE IN IMPATIENS CAPENSIS IN NATURAL ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1969-1981.	1.1	74
70	PLASTICITY TO LIGHT CUES AND RESOURCES IN ARABIDOPSIS THALIANA: TESTING FOR ADAPTIVE VALUE AND COSTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1982-1994.	1.1	226
71	PLASTICITY TO LIGHT CUES AND RESOURCES IN ARABIDOPSIS THALIANA: TESTING FOR ADAPTIVE VALUE AND COSTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1982.	1.1	21
72	EVIDENCE OF ADAPTIVE DIVERGENCE IN PLASTICITY: DENSITY- AND SITE-DEPENDENT SELECTION ON SHADE-AVOIDANCE RESPONSES IN IMPATIENS CAPENSIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1956.	1,1	22

JOHANNA SCHMITT

#	Article	IF	CITATIONS
73	DENSITY DEPENDENCE AND POPULATION DIFFERENTIATION OF GENETIC ARCHITECTURE IN IMPATIENS CAPENSIS IN NATURAL ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1969.	1.1	6
74	The Evolution of Plant Ecophysiological Traits: Recent Advances and Future Directions. BioScience, 2000, 50, 979.	2.2	387
75	Effects of Red to Farâ€Red Ratio and Plant Density on Biomass Allocation and Gas Exchange in Impatiens capensis. International Journal of Plant Sciences, 1999, 160, 723-733.	0.6	74
76	Manipulative Approaches to Testing Adaptive Plasticity: Phytochromeâ€Mediated Shadeâ€Avoidance Responses in Plants. American Naturalist, 1999, 154, S43-S54.	1.0	210
77	The Genetic Architecture of Plasticity to Density in Impatiens capensis. Evolution; International Journal of Organic Evolution, 1999, 53, 1377.	1.1	32
78	Introduction: Experimental Approaches to Testing Adaptation. American Naturalist, 1999, 154, S1-S3.	1.0	8
79	THE GENETIC ARCHITECTURE OF PLASTICITY TO DENSITY IN <i>IMPATIENS CAPENSIS</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1377-1386.	1.1	83
80	Consequences of sexually dimorphic timing of emergence and flowering in Silene latifolia. Journal of Ecology, 1998, 86, 397-404.	1.9	72
81	Testing the Adaptive Plasticity Hypothesis: Density-Dependent Selection on Manipulated Stem Length in Impatiens capensis. American Naturalist, 1996, 147, 445-465.	1.0	532
82	Testing the Adaptive Plasticity Hypothesis for Plant Responses to Neighbors. Plant Species Biology, 1996, 11, 59-67.	0.6	23
83	A Test of the Adaptive Plasticity Hypothesis Using Transgenic and Mutant Plants Disabled in Phytochrome-Mediated Elongation Responses to Neighbors. American Naturalist, 1995, 146, 937-953.	1.0	300
84	Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia, 1995, 101, 75-85.	0.9	113
85	Sexual Dimorphism of Dormancy and Survivorship in Buried Seeds of Silene Latifolia. Journal of Ecology, 1995, 83, 795.	1.9	32
86	Light spectral quality, phytochrome and plant competition. Trends in Ecology and Evolution, 1993, 8, 47-51.	4.2	325
87	Reaction Norms of Morphological and Life-History Traits to Light Availability in Impatiens capensis. Evolution; International Journal of Organic Evolution, 1993, 47, 1654.	1.1	36
88	REACTION NORMS OF MORPHOLOGICAL AND LIFEâ€HISTORY TRAITS TO LIGHT AVAILABILITY IN <i>IMPATIENS CAPENSIS</i> . Evolution; International Journal of Organic Evolution, 1993, 47, 1654-1668.	1.1	108
89	GENETIC CONSTRAINTS ON THE INDEPENDENT EVOLUTION OF MALE AND FEMALE REPRODUCTIVE CHARACTERS IN THE TRISTYLOUS PLANT <i>LYTHRUM SALICARIA</i> . Evolution; International Journal of Organic Evolution, 1993, 47, 1457-1471.	1.1	68
90	Norms of Reaction of Seed Traits to Maternal Environments in Plantago lanceolata. American Naturalist, 1992, 139, 451-466.	1.0	163

#	Article	IF	CITATIONS
91	NEIGHBOR RELATEDNESS AND COMPETITIVE PERFORMANCE IN IMPATIENS CAPENSIS (BALSAMINACEAE): A TEST OF THE RESOURCE PARTITIONING HYPOTHESIS. American Journal of Botany, 1992, 79, 181-185.	0.8	38
92	Effects of genotype, habitat, and seasonal variation on iridoid glycoside content of Plantago lanceolata (Plantaginaceae) and the implications for insect herbivores. Oecologia, 1992, 91, 201-207.	0.9	86
93	NEIGHBOR RELATEDNESS AND COMPETITIVE PERFORMANCE IN IMPATIENS CAPENSIS (BALSAMINACEAE): A TEST OF THE RESOURCE PARTITIONING HYPOTHESIS. , 1992, 79, 181.		19
94	MATERNAL AND PATERNAL EFFECTS ON FOLLICLE PRODUCTION IN THE MILKWEED ASCLEPIAS SYRIACA (ASCLEPIADACEAE). American Journal of Botany, 1991, 78, 1304-1309.	0.8	13
95	MICROGEOGRAPHIC GENETIC STRUCTURE OF MORPHOLOGICAL AND LIFE HISTORY TRAITS IN A NATURAL POPULATION OF <i>IMPATIENS CAPENSIS</i> . Evolution; International Journal of Organic Evolution, 1991, 45, 178-189.	1.1	76
96	THE EFFECT OF DISTANCE FROM THE PARENTAL SITE ON OFFSPRING PERFORMANCE AND INBREEDING DEPRESSION IN <i>IMPATIENS CAPENSIS</i> : A TEST OF THE LOCAL ADAPTATION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1990, 44, 2022-2030.	1.1	167
97	ENHANCEMENT OF INBREEDING DEPRESSION BY DOMINANCE AND SUPPRESSION IN <i>IMPATIENS CAPENSIS</i> . Evolution; International Journal of Organic Evolution, 1990, 44, 269-278.	1.1	199
98	Enhancement of Inbreeding Depression by Dominance and Suppression in Impatiens capensis. Evolution; International Journal of Organic Evolution, 1990, 44, 269.	1.1	47
99	The Effect of Distance from the Parental Site on Offspring Performance and Inbreeding Depression in Impatiens capensis: A Test of the Local Adaptation Hypothesis. Evolution; International Journal of Organic Evolution, 1990, 44, 2022.	1.1	121
100	Sexual advantage. Nature, 1989, 337, 413-414.	13.7	3
101	A test of the short-term advantage of sexual reproduction. Nature, 1988, 331, 714-716.	13.7	87
102	A TEST OF THE SIBâ€COMPETITION HYPOTHESIS FOR OUTCROSSING ADVANTAGE IN <i>IMPATIENS CAPENSIS</i> . Evolution; International Journal of Organic Evolution, 1987, 41, 579-590.	1.1	84
103	Dominance and Suppression, Size-Dependent Growth and Self-Thinning in a Natural Impatiens Capensis Population. Journal of Ecology, 1987, 75, 651.	1.9	147
104	Experimental Studies of the Evolutionary Significance of Sexual Reproduction. III. Maternal and Paternal Effects During Seedling Establishment. Evolution; International Journal of Organic Evolution, 1986, 40, 817.	1.1	13
105	EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. IV. EFFECT OF NEIGHBOR RELATEDNESS AND APHID INFESTATION ON SEEDLING PERFORMANCE. Evolution; International Journal of Organic Evolution, 1986, 40, 830-836.	1.1	110
106	EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. III. MATERNAL AND PATERNAL EFFECTS DURING SEEDLING ESTABLISHMENT. Evolution; International Journal of Organic Evolution, 1986, 40, 817-829.	1.1	85
107	Light-Depedent Dominance and Suppression in Experimental Radish Populations. Ecology, 1986, 67, 1502-1507.	1.5	78
108	Paternal and maternal effects on propagule size in Anthoxanthum odoratum. Oecologia, 1986, 69, 277-282.	0.9	109

#	Article	IF	CITATIONS
109	Propagule size, dispersal ability, and seedling performance in Asclepias syriaca. Oecologia, 1985, 67, 372-379.	0.9	147
110	EFFECT OF ENVIRONMENT ON PERCENTAGE FEMALE RAY FLORETS PER CAPITULUM AND OUTCROSSING POTENTIAL IN A SELFâ€COMPATIBLE COMPOSITE (SENECIO VULGARIS L. VAR. HIBERNICUS SYME). New Phytologist, 1985, 101, 219-229.	3.5	17
111	Differential Dispersal of Self-Fertilized and Outcrossed Progeny in Jewelweed (Impatiens capensis). American Naturalist, 1985, 126, 570-575.	1.0	109
112	Flowering plant density and pollinator visitation in Senecio. Oecologia, 1983, 60, 97-102.	0.9	98
113	Density-Dependent Pollinator Foraging, Flowering Phenology, and Temporal Pollen Dispersal Patterns in Linanthus bicolor. Evolution; International Journal of Organic Evolution, 1983, 37, 1247.	1.1	42
114	DENSITY-DEPENDENT POLLINATOR FORAGING, FLOWERING PHENOLOGY, AND TEMPORAL POLLEN DISPERSAL PATTERNS IN <i>LINANTHUS BICOLOR</i> . Evolution; International Journal of Organic Evolution, 1983, 37, 1247-1257.	1.1	98
115	POLLINATOR FORAGING BEHAVIOR AND GENE DISPERSAL IN <i>SENECIO</i> (COMPOSITAE). Evolution; International Journal of Organic Evolution, 1980, 34, 934-943.	1.1	209