Sha Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1118276/publications.pdf Version: 2024-02-01

SHA LIANC

#	Article	IF	CITATIONS
1	Simultaneously tuning emission color and realizing optical thermometry via efficient Tb3+→Eu3+ energy transfer in whitlockite-type phosphate multifunctional phosphors. Journal of Alloys and Compounds, 2019, 780, 266-275.	5.5	210
2	Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF 4 :Yb 3+ /Er 3+ nanocrystals. Journal of Alloys and Compounds, 2014, 617, 538-541.	5.5	186
3	Deep-Tissue Temperature Sensing Realized in BaY ₂ O ₄ :Yb ³⁺ /Er ³⁺ with Ultrahigh Sensitivity and Extremely Intense Red Upconversion Luminescence. Inorganic Chemistry, 2020, 59, 11054-11060.	4.0	85
4	Upconversion nanoparticles modified by Cu ₂ S for photothermal therapy along with real-time optical thermometry. Nanoscale, 2021, 13, 7161-7168.	5.6	66
5	Dual-Mode Optical Thermometry Based on the Fluorescence Intensity Ratio Excited by a 915 nm Wavelength in LuVO ₄ :Yb ³⁺ /Er ³⁺ @SiO ₂ Nanoparticles. Inorganic Chemistry, 2019, 58, 8245-8252.	4.0	65
6	Multifunctional optical thermometry based on the stark sublevels of Er ³⁺ in CaOâ€Y ₂ O ₃ : Yb ³⁺ /Er ³ ⁺ . Journal of the American Ceramic Society, 2020, 103, 2540-2547.	3.8	62
7	Constructing ultra-sensitive dual-mode optical thermometers: Utilizing FIR of Mn ⁴⁺ /Eu ³⁺ and lifetime of Mn ⁴⁺ based on double perovskite tellurite phosphor. Optics Express, 2020, 28, 33747.	3.4	57
8	A novel dazzling Eu ³⁺ â€doped whitlockiteâ€type phosphate redâ€emitting phosphor for white lightâ€emitting diodes. Journal of the American Ceramic Society, 2018, 101, 4095-4107.	3.8	47
9	Near-Infrared-to-Near-Infrared Optical Thermometer BaY ₂ O ₄ : Yb ³⁺ /Nd ³⁺ Assembled with Photothermal Conversion Performance. Inorganic Chemistry, 2022, 61, 5425-5432.	4.0	45
10	A novel double-perovskite LiLaMgTeO6: Mn4+ far-red phosphor for indoor plant cultivation white LEDs: Crystal and electronic structure, and photoluminescence properties. Journal of Alloys and Compounds, 2020, 832, 154905.	5.5	42
11	Upconversion properties and temperature sensing behaviors in visible and near-infrared region based on fluorescence intensity ratio in LuVO4: Yb3+/Er3+. Journal of Alloys and Compounds, 2018, 769, 325-331.	5.5	40
12	Eu 3+ activated LiSrVO 4 phosphors: Emission color tuning and potential application in temperature sensing. Dyes and Pigments, 2018, 151, 219-226.	3.7	35
13	Design of a bi-functional NaScF4: Yb3+/Er3+ nanoparticles for deep-tissue bioimaging and optical thermometry through Mn2+ doping. Talanta, 2021, 224, 121832.	5.5	28
14	High-sensitivity luminescent thermometer based on Mn4+/Sm3+ dual-emission centers in double-perovskite tellurate. Ceramics International, 2022, 48, 27664-27671.	4.8	24
15	Sr ₃ Lu (VO ₄) ₃ : Eu ³⁺ redâ€emitting phosphors for warm white LEDs. Journal of the American Ceramic Society, 2021, 104, 2721-2729.	3.8	23
16	Investigation of the Energy-Transfer Mechanism in Ho ³⁺ - and Yb ³⁺ -Codoped Lu ₂ O ₃ Phosphor with Efficient Near-Infrared Downconversion. Inorganic Chemistry, 2017, 56, 1498-1503.	4.0	22
17	Insight into energy transfer, color tuning, and white emission in Tm3+ and Dy3+ codoped Ca8ZnLa(PO4)7 phosphors. Optical Materials, 2020, 102, 109808.	3.6	22
18	Strategy for optical thermometry based on temperature-dependent charge transfer to the Eu ³⁺ 4f-4f excitation intensity ratio in Sr ₃ Lu(VO ₄) ₃ Eu ³⁺ and CaWO ₄ :Nd ³⁺ . Optics Letters, 2020, 45, 3637.	3.3	20

Sha Jiang

#	Article	IF	CITATIONS
19	Improvement of Green Upconversion Monochromaticity by Doping Eu ³⁺ in Lu ₂ O ₃ :Yb ³⁺ /Ho ³⁺ Powders with Detailed Investigation of the Energy Transfer Mechanism. Inorganic Chemistry, 2017, 56, 9194-9199.	4.0	15
20	Luminescent properties of Eu3+-doped NaLaCaWO6 red phosphors and temperature sensing derived from the excited state of charge transfer band. Journal of Luminescence, 2022, 248, 118964.	3.1	15
21	Multifunctional broad-band excited Eu3+-activated fluorescent materials for potential warm white light-emitting diodes (w-LEDs) and temperature sensor applications. Advanced Powder Technology, 2018, 29, 43-49.	4.1	13
22	Nd3+ and Nd3+/Yb3+-incorporated complexes as optical thermometer working in the second biological window. Sensing and Bio-Sensing Research, 2020, 29, 100345.	4.2	12
23	Dual-mode optical thermometry based on intervalence charge transfer excitations in Tb3+/Pr3+ co-doped CaNb2O6 phosphors. Ceramics International, 2022, 48, 30005-30011.	4.8	11
24	Luminescent properties and ratiometric optical thermometry of Ln-BDC-F4 compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117418.	3.9	10
25	Multipath optical thermometry realized in CaSc ₂ O ₄ : Yb ³⁺ /Er ³⁺ with high sensitivity and superior resolution. Journal of the American Ceramic Society, 2021, 104, 2711-2720.	3.8	10
26	Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1500Ânm. Journal of the American Ceramic Society, 2021, 104, 5784-5793.	3.8	10
27	Enhancement of Eu ³⁺ Red Upconversion in Lu ₂ O ₃ : Yb ³⁺ /Eu ³⁺ Powders under the Assistance of Bridging Function Originated from Ho ³⁺ Tridoping. Inorganic Chemistry, 2017, 56, 13955-13961.	4.0	9
28	Opposite temperature luminescent behaviours of Tb3+ and Pr3+ co-doped BaMoO4 glass ceramics for temperature sensing. Journal of Luminescence, 2021, 236, 118080.	3.1	9
29	Thermally enhanced near-infrared luminescence in CaSc2O4: Yb3+/Nd3+ nanorods for temperature sensing and photothermal conversion. Ceramics International, 2022, 48, 23436-23443.	4.8	6