K V Rajagopalan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11182636/publications.pdf

Version: 2024-02-01

155	12,913	62 h-index	108
papers	citations		g-index
155	155	155	3659
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes Journal of Clinical Investigation, 1975, 55, 1357-1372.	8.2	725
2	Molecular Basis of Sulfite Oxidase Deficiency from the Structure of Sulfite Oxidase. Cell, 1997, 91, 973-983.	28.9	507
3	Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination. Science, 1996, 272, 1615-1621.	12.6	498
4	The pterin molybdenum cofactors. Journal of Biological Chemistry, 1992, 267, 10199-202.	3.4	314
5	Structural and metabolic relationship between the molybdenum cofactor and urothione Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6856-6860.	7.1	286
6	Metal-induced formation of metallothionein in rat liver. Archives of Biochemistry and Biophysics, 1975, 170, 242-252.	3.0	283
7	A new purification procedure for bovine milk xanthine oxidase: Effect of proteolysis on the subunit structure. Archives of Biochemistry and Biophysics, 1975, 169, 695-701.	3.0	236
8	Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature, 2001, 414, 325-329.	27.8	229
9	Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. Journal of Biological Chemistry, 1980, 255, 1783-6.	3.4	221
10	The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives Journal of Biological Chemistry, 1984, 259, 5414-5422.	3.4	212
11	Hepatic aldehyde oxidase. I. Purification and properties. Journal of Biological Chemistry, 1962, 237, 922-8.	3.4	212
12	The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type) Tj ETQq0	0 030 rgBT	Overlock 10
13	Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase. Archives of Biochemistry and Biophysics, 1976, 172, 354-364.	3.0	201
14	Molybdenum sites of sulfite oxidase and xanthine dehydrogenase. A comparison by EXAFS. Journal of the American Chemical Society, 1981, 103, 7721-7727.	13.7	196
15	Crystal Structures of the Active and Alloxanthine-Inhibited Forms of Xanthine Dehydrogenase from Rhodobacter capsulatus. Structure, 2002, 10, 115-125.	3.3	193
16	Identification of the second chromophore of Escherichia coli and yeast DNA photolyases as 5,10-methenyltetrahydrofolate Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2046-2050.	7.1	178
17	Purification and some properties of Cd-binding protein from rat liver. Archives of Biochemistry and Biophysics, 1972, 153, 755-762.	3.0	175
18	The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. Journal of Biological Chemistry, 1984, 259, 5414-22.	3.4	168

#	Article	IF	Citations
19	Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 3715-3719.	7.1	160
20	Molybdenum: An Essential Trace Element in Human Nutrition. Annual Review of Nutrition, 1988, 8, 401-427.	10.1	156
21	The 1.3 Ã Crystal Structure ofRhodobacter sphaeroidesDimethyl Sulfoxide Reductase Reveals Two Distinct Molybdenum Coordination Environments. Journal of the American Chemical Society, 2000, 122, 7673-7680.	13.7	156
22	Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3190-3194.	7.1	155
23	Molecular basis of the biological function of molybdenum. Effect of tungsten on xanthine oxidase and sulfite oxidase in the rat. Journal of Biological Chemistry, 1974, 249, 859-66.	3.4	151
24	Structure of the Molybdenum Site of Dimethyl Sulfoxide Reductase. Journal of the American Chemical Society, 1999, 121, 1256-1266.	13.7	149
25	Purification and properties of chicken liver xanthine dehydrogenase. Journal of Biological Chemistry, 1967, 242, 4097-107.	3.4	145
26	Investigation of the Early Steps of Molybdopterin Biosynthesis in Escherichia coli through the Use of in Vivo Labeling Studies. Journal of Biological Chemistry, 1995, 270, 1082-1087.	3.4	141
27	Human sulfite oxidase R160Q: Identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6394-6398.	7.1	126
28	Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nature Structural Biology, 2001, 8, 42-46.	9.7	124
29	Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5946-5951.	7.1	124
30	X-ray Absorption Spectroscopy of Dimethyl Sulfoxide Reductase fromRhodobacter sphaeroides. Journal of the American Chemical Society, 1996, 118, 1113-1117.	13.7	123
31	The Molybdenum Site of Sulfite Oxidase:Â A Comparison of Wild-Type and the Cysteine 207 to Serine Mutant Using X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 1996, 118, 8588-8592.	13.7	123
32	Hepatic sulfite oxidase. A functional role for molybdenum. Journal of Biological Chemistry, 1971, 246, 374-82.	3.4	121
33	Active Site Structures and Catalytic Mechanism of Rhodobacter sphaeroides Dimethyl Sulfoxide Reductase as Revealed by Resonance Raman Spectroscopy. Journal of the American Chemical Society, 1997, 119, 12906-12916.	13.7	118
34	Tryptic cleavage of rat liver sulfite oxidase. Isolation and characterization of molybdenum and heme domains Journal of Biological Chemistry, 1977, 252, 2017-2025.	3.4	118
35	Characterization of Escherichia coli MoeB and Its Involvement in the Activation of Molybdopterin Synthase for the Biosynthesis of the Molybdenum Cofactor. Journal of Biological Chemistry, 2001, 276, 34695-34701.	3.4	117
36	The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria. Coordination Chemistry Reviews, 2011, 255, 1129-1144.	18.8	116

3

#	Article	IF	CITATIONS
37	A Sulfurtransferase Is Required in the Transfer of Cysteine Sulfur in the in Vitro Synthesis of Molybdopterin from Precursor Z in Escherichia coli. Journal of Biological Chemistry, 2001, 276, 22024-22031.	3.4	113
38	Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. Journal of Bacteriology, 1987, 169, 117-125.	2.2	111
39	Molecular Basis of the Biological Function of Molybdenum. The Relationship between Sulfite Oxidase and the Acute Toxicity of Bisulfite and SO2. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70, 3655-3659.	7.1	109
40	Optimization of Expression of Human Sulfite Oxidase and Its Molybdenum Domain. Archives of Biochemistry and Biophysics, 2000, 383, 281-287.	3.0	109
41	Purification and properties of sulfite oxidase from chicken liver. Presence of molybdenum in sulfite oxidase from diverse sources. Journal of Biological Chemistry, 1972, 247, 6566-73.	3.4	109
42	Purification and properties of sulfite oxidase from human liver Journal of Clinical Investigation, 1976, 58, 543-550.	8.2	106
43	The Crystal Structure of Escherichia coli MoeA and Its Relationship to the Multifunctional Protein Gephyrin. Structure, 2001, 9, 299-310.	3.3	103
44	Mechanistic and Mutational Studies of Escherichia coli Molybdopterin Synthase Clarify the Final Step of Molybdopterin Biosynthesis. Journal of Biological Chemistry, 2003, 278, 14523-14532.	3.4	95
45	HEPATIC ALDEHYDE OXIDASE. II. DIFFERENTIAL INHIBITION OF ELECTRON TRANSFER TO VARIOUS ELECTRON ACCEPTORS. Journal of Biological Chemistry, 1964, 239, 2022-6.	3.4	93
46	Drosophila melanogaster ma-l mutants are defective in the sulfuration of desulfo Mo hydroxylases Journal of Biological Chemistry, 1982, 257, 3958-3962.	3.4	91
47	Tryptic cleavage of rat liver sulfite oxidase. Isolation and characterization of molybdenum and heme domains. Journal of Biological Chemistry, 1977, 252, 2017-25.	3.4	89
48	Purification and properties of xanthine dehydroganase from Micrococcus lactilyticus. Journal of Biological Chemistry, 1967, 242, 4108-17.	3.4	87
49	Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans Journal of Biological Chemistry, 1991, 266, 45-51.	3.4	83
50	Crystal Structure of the Gephyrin-related Molybdenum Cofactor Biosynthesis Protein MogA from Escherichia coli. Journal of Biological Chemistry, 2000, 275, 1814-1822.	3.4	81
51	In vitro synthesis of molybdopterin from precursor Z using purified converting factor. Role of protein-bound sulfur in formation of the dithiolene. Journal of Biological Chemistry, 1993, 268, 13506-9.	3.4	81
52	Isolation and characterization of a second molybdopterin dinucleotide: Molybdopterin cytosine dinucleotide. Archives of Biochemistry and Biophysics, 1990, 283, 542-545.	3.0	75
53	Molecular basis of the biological function of molybdenum. Molybdenum-free sulfite oxidase from livers of tungsten-treated rats. Journal of Biological Chemistry, 1974, 249, 5046-55.	3.4	75
54	Isolated sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 patients. Human Mutation, 2002, 20, 74-74.	2.5	74

#	Article	IF	Citations
55	Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants. Journal of Bacteriology, 1996, 178, 4310-4312.	2.2	73
56	Structural Insights into Sulfite Oxidase Deficiency. Journal of Biological Chemistry, 2005, 280, 33506-33515.	3.4	73
57	Biosynthesis and processing of the molybdenum cofactors. Biochemical Society Transactions, 1997, 25, 757-761.	3.4	71
58	Studies on the zinc content of Cd-induced thionein. Archives of Biochemistry and Biophysics, 1978, 188, 466-475.	3.0	68
59	Molecular basis of the biological function of molybdenum. Molybdenum-free xanthine oxidase from livers of tungsten-treated rats. Journal of Biological Chemistry, 1974, 249, 5056-61.	3.4	67
60	Absence of hepatic molybdenum cofactor: An inborn error of metabolism leading to a combined deficiency of sulphite oxidase and xanthine dehydrogenase. Journal of Inherited Metabolic Disease, 1983, 6, 78-83.	3.6	66
61	Optical transitions of molybdenum(V) in glycerol-inhibited DMSO reductase from Rhodobacter sphaeroides. Inorganic Chemistry, 1993, 32, 2616-2617.	4.0	66
62	Properties of the prosthetic groups of rabbit liver aldehyde oxidase: a comparison of molybdenum hydroxylase enzymes. Biochemistry, 1982, 21, 3561-3568.	2.5	64
63	The Crystal Structure of the Escherichia coliMobA Protein Provides Insight into Molybdopterin Guanine Dinucleotide Biosynthesis. Journal of Biological Chemistry, 2000, 275, 40211-40217.	3.4	64
64	Identification of the Molybdenum Cofactor of Dimethyl Sulfoxide Reductase fromRhodobacter sphaeroidesf. sp.denitrificansas Bis(molybdopterin guanine dinucleotide)molybdenum. Archives of Biochemistry and Biophysics, 1996, 325, 139-143.	3.0	63
65	The structure of a Molybdopterin Precursor. Journal of Biological Chemistry, 1989, 264, 13440-13447.	3.4	62
66	Resonance Raman Characterization of the Molybdenum Center in Sulfite Oxidase:  Identification of MoO Stretching Modes. Journal of the American Chemical Society, 1997, 119, 2590-2591.	13.7	60
67	In vitro reconstitution of demolybdosulfite oxidase by a molybdenum cofactor from rat liver and other sources Journal of Biological Chemistry, 1977, 252, 4994-5003.	3.4	60
68	Mechanism of Assembly of the Bis(Molybdopterin Guanine Dinucleotide)Molybdenum Cofactor in Rhodobacter sphaeroidesDimethyl Sulfoxide Reductase. Journal of Biological Chemistry, 2000, 275, 40202-40210.	3.4	59
69	Escherichia coli MoeA and MogA. Journal of Biological Chemistry, 2002, 277, 24995-25000.	3.4	59
70	Recombinant Rhodobacter capsulatus Xanthine Dehydrogenase, a Useful Model System for the Characterization of Protein Variants Leading to Xanthinuria I in Humans. Journal of Biological Chemistry, 2003, 278, 20802-20811.	3.4	57
71	The Role of Tyrosine 343 in Substrate Binding and Catalysis by Human Sulfite Oxidase. Journal of Biological Chemistry, 2004, 279, 15105-15113.	3.4	57
72	Molybdopterin in carbon monoxide oxidase from carboxydotrophic bacteria. Journal of Bacteriology, 1984, 157, 643-648.	2.2	57

#	Article	IF	Citations
73	Molybdopterin from molybdenum and tungsten enzymes. Advances in Protein Chemistry, 2001, 58, 47-94.	4.4	56
74	Two proteins encoded at the chlA locus constitute the converting factor of Escherichia coli chlA1. Journal of Bacteriology, 1989, 171, 3373-3378.	2.2	55
75	Re-design of Rhodobacter sphaeroides Dimethyl Sulfoxide Reductase. Journal of Biological Chemistry, 1999, 274, 8428-8436.	3.4	55
76	Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. Journal of Biological Chemistry, 1994, 269, 272-6.	3.4	54
77	Resonance Raman Spectroscopic Characterization of the Molybdopterin Active Site of DMSO Reductase. Biochemistry, 1995, 34, 3032-3039.	2.5	53
78	In Vitro Incorporation of Nascent Molybdenum Cofactor into Human Sulfite Oxidase. Journal of Biological Chemistry, 2001, 276, 1837-1844.	3.4	52
79	Mechanistic Studies of Human Molybdopterin Synthase Reaction and Characterization of Mutants Identified in Group B Patients of Molybdenum Cofactor Deficiency. Journal of Biological Chemistry, 2003, 278, 26127-26134.	3.4	52
80	The relationship of Mo, molybdopterin, and the cyanolyzable sulfur in the Mo cofactor. Archives of Biochemistry and Biophysics, 1984, 230, 264-273.	3.0	51
81	Isolated sulfite oxidase deficiency. Ophthalmology, 1999, 106, 1957-1961.	5.2	50
82	In Vitro Molybdenum Ligation to Molybdopterin Using Purified Components. Journal of Biological Chemistry, 2005, 280, 7817-7822.	3.4	50
83	Novel Aspects of the Biochemistry of the Molybdenum Cofactor. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 64, 215-290.	1.3	50
84	In vitro system for molybdopterin biosynthesis. Journal of Bacteriology, 1987, 169, 110-116.	2.2	48
85	Essential Role of Conserved Arginine 160 in Intramolecular Electron Transfer in Human Sulfite Oxidaseâ€. Biochemistry, 2003, 42, 12235-12242.	2.5	48
86	Hepatic sulfite oxidase effect of anions on interaction with cytochrome c. Biochimica Et Biophysica Acta - Biomembranes, 1974, 370, 389-398.	2.6	47
87	Observation of 170 effects on MoV EPR spectra in sulfite oxidase; xanthine dehydrogenase, and MoO(SC6H5)4â°'. Biochemical and Biophysical Research Communications, 1979, 91, 434-439.	2.1	47
88	Molecular cloning of human liver sulfite oxidase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1262, 147-149.	2.4	47
89	In vitro reconstitution of nitrate reductase activity of the Neurospora crassa mutant nit-1: Specific incorporation of molybdopterin. Archives of Biochemistry and Biophysics, 1984, 233, 821-829.	3.0	46
90	Crystal Structure of a Molybdopterin Synthaseâ^'Precursor Z Complex:  Insight into Its Sulfur Transfer Mechanism and Its Role in Molybdenum Cofactor Deficiency [,] . Biochemistry, 2008, 47, 615-626.	2.5	46

#	Article	IF	Citations
91	Electron paramagnetic resonance of the tungsten derivative of rat liver sulfite oxidase Journal of Biological Chemistry, 1976, 251, 5505-5511.	3.4	46
92	Electron paramagnetic resonance studies on the molybdenum center of assimilatory NADH:nitrate reductase from Chlorella vulgaris Journal of Biological Chemistry, 1984, 259, 849-853.	3.4	46
93	Structural Studies of Molybdopterin Synthase Provide Insights into Its Catalytic Mechanism. Journal of Biological Chemistry, 2003, 278, 14514-14522.	3.4	45
94	Role of enzyme-bound 5,10-methenyltetrahydropteroylpolyglutamate in catalysis by Escherichia coli DNA photolyase. Journal of Biological Chemistry, 1989, 264, 9649-9656.	3.4	45
95	Structural Studies of the Molybdenum Center of the Pathogenic R160Q Mutant of Human Sulfite Oxidase by Pulsed EPR Spectroscopy and ¹⁷ O and ³³ S Labeling. Journal of the American Chemical Society, 2008, 130, 8471-8480.	13.7	44
96	Electrocatalytically functional multilayer assembly of sulfite oxidase and cytochrome c. Soft Matter, 2008, 4, 972.	2.7	43
97	Association of molybdopterin guanine dinucleotide with Escherichia coli dimethyl sulfoxide reductase: effect of tungstate and a mob mutation. Journal of Bacteriology, 1995, 177, 2057-2063.	2.2	42
98	Electron paramagnetic resonance properties and oxidation-reduction potentials of the molybdenum, flavin, and iron-sulfur centers of chicken liver xanthine dehydrogenase. Archives of Biochemistry and Biophysics, 1980, 201, 468-475.	3.0	41
99	Pulsed EPR Studies of Nonexchangeable Protons near the Mo(V) Center of Sulfite Oxidase: Direct Detection of the α-Proton of the Coordinated Cysteinyl Residue and Structural Implications for the Active Site. Journal of the American Chemical Society, 2002, 124, 6109-6118.	13.7	41
100	Human sulfite oxidase deficiency. Characterization of the molecular defect in a multicomponent system Journal of Clinical Investigation, 1976, 58, 551-556.	8.2	41
101	Studies of vanadium toxicity in the rat lack of correlation with molybdenum utilization. Biochemical and Biophysical Research Communications, 1974, 56, 940-946.	2.1	40
102	Prenatal diagnosis of molybdenum cofactor deficiency by assay of sulphite oxidase activity in chorionic villus samples. Journal of Inherited Metabolic Disease, 1991, 14, 932-937.	3.6	39
103	Interaction of Arsenate with the Molybdenum Site of Sulfite Oxidase. Journal of the American Chemical Society, 1998, 120, 4522-4523.	13.7	38
104	Resonance Raman Characterization of Biotin Sulfoxide Reductase. Journal of Biological Chemistry, 2000, 275, 6798-6805.	3.4	38
105	High-Resolution EXAFS of the Active Site of Human Sulfite Oxidase:Â Comparison with Density Functional Theory and X-ray Crystallographic Results. Inorganic Chemistry, 2006, 45, 493-495.	4.0	38
106	Electron paramagnetic resonance studies of iron reduction and semiquinone formation in metalloflavoproteins. Biochemical and Biophysical Research Communications, 1962, 8, 220-226.	2.1	37
107	Molybdopterin synthase mutations in a mild case of molybdenum cofactor deficiency. American Journal of Medical Genetics Part A, 2001, 104, 169-173.	2.4	37
108	Role of the C-Terminal Gly-Gly Motif ofEscherichia ColiMoaD, a Molybdenum Cofactor Biosynthesis Protein with a Ubiquitin Foldâ€. Biochemistry, 2007, 46, 909-916.	2.5	37

#	Article	IF	CITATIONS
109	Molybdenum-An Essential Trace Element. Nutrition Reviews, 1987, 45, 321-328.	5.8	37
110	The state of reduction of molybdopterin in xanthine oxidase and sulfite oxidase Journal of Biological Chemistry, 1990, 265, 13047-13054.	3.4	37
111	Structure of the Molybdenum Site of Rhodobacter sphaeroides Biotin Sulfoxide Reductase. Biochemistry, 2000, 39, 4046-4052.	2.5	33
112	Structure of the Molybdenum Site of Escherichia coli Trimethylamine N-Oxide Reductase. Inorganic Chemistry, 2008, 47, 1074-1078.	4.0	33
113	Coordination Chemistry at the Molybdenum Site of Sulfite Oxidase: Redox-Induced Structural Changes in the Cysteine 207 to Serine Mutant. Inorganic Chemistry, 2004, 43, 8456-8460.	4.0	31
114	Oxidation of molybdopterin in sulfite oxidase by ferricyanide. Effect on electron transfer activities Journal of Biological Chemistry, 1991, 266, 4889-4895.	3.4	31
115	Defective molybdopterin biosynthesis: clinical heterogeneity associated with molybdenum cofactor deficiency. Journal of Inherited Metabolic Disease, 1995, 18, 283-290.	3.6	30
116	Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase. Journal of the American Chemical Society, 2007, 129, 9421-9428.	13.7	30
117	In vitro reconstitution of demolybdosulfite oxidase by molybdate Journal of Biological Chemistry, 1977, 252, 4988-4993.	3.4	30
118	Role of Conserved Tyrosine 343 in Intramolecular Electron Transfer in Human Sulfite Oxidase. Journal of Biological Chemistry, 2003, 278, 2913-2920.	3.4	28
119	Mo ^V Electron Paramagnetic Resonance of Sulfite Oxidase Revisited: The Low-pH Chloride Signal. Inorganic Chemistry, 2008, 47, 2033-2038.	4.0	28
120	Nonequivalence of the flavin adenine dinucleotide moieties of chicken liver xanthine dehydrogenase. Journal of Biological Chemistry, 1972, 247, 2177-82.	3.4	28
121	An Active Site Tyrosine Influences the Ability of the Dimethyl Sulfoxide Reductase Family of Molybdopterin Enzymes to Reduce S-Oxides. Journal of Biological Chemistry, 2001, 276, 13178-13185.	3.4	27
122	Thermodynamic Analysis of Subunit Interactions inEscherichia coliMolybdopterin Synthaseâ€. Biochemistry, 2005, 44, 2595-2601.	2.5	26
123	The G473D Mutation Impairs Dimerization and Catalysis in Human Sulfite Oxidase. Biochemistry, 2006, 45, 2149-2160.	2.5	26
124	The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site. Biochemistry, 2010, 49, 3989-4000.	2.5	26
125	Human Molybdenum Cofactor Deficiency. Advances in Experimental Medicine and Biology, 1993, 338, 373-378.	1.6	26
126	The domains of rat liver sulfite oxidase. Proteolytic separation and characterization. Journal of Biological Chemistry, 1978, 253, 8747-52.	3.4	24

#	Article	IF	CITATIONS
127	Molecular basis of the biological function of molybdenum. Developmental patterns of sulfite oxidase and xanthine oxidase in the rat. Archives of Biochemistry and Biophysics, 1974, 164, 440-446.	3.0	22
128	A molybdopterin-free form of xanthine oxidase. Archives of Biochemistry and Biophysics, 1987, 259, 363-371.	3.0	21
129	Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: a reevaluation. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6493-6497.	7.1	21
130	The Moâ^OH proton of the low-pH form of sulfite oxidase: Comparison of the hyperfine interactions obtained from pulsed ENDOR, CW-EPR and ESEEM measurements. Applied Magnetic Resonance, 2002, 22, 421-430.	1.2	21
131	Isolated sulfite oxidase deficiency: mutation analysis and DNA-based prenatal diagnosis. Prenatal Diagnosis, 2002, 22, 433-436.	2.3	21
132	Interaction of Product Analogues with the Active Site of Rhodobacter Sphaeroides Dimethyl Sulfoxide Reductase. Inorganic Chemistry, 2007, 46, 3097-3104.	4.0	21
133	Effect of Exchange of the Cysteine Molybdenum Ligand with Selenocysteine on the Structure and Function of the Active Site in Human Sulfite Oxidase. Biochemistry, 2013, 52, 8295-8303.	2.5	21
134	Oxidation of phenazine methosulfate by hepatic aldehyde oxidase. Biochemical and Biophysical Research Communications, 1962, 8, 43-47.	2.1	20
135	Mutational Analysis ofEscherichia coliMoeA: Two Functional Activities Map to the Active Site Cleftâ€,‡. Biochemistry, 2007, 46, 78-86.	2.5	20
136	The presence and distribution of reduced folates in Escherichia coli dihydrofolate reductase mutants Journal of Biological Chemistry, 1990, 265, 9850-9856.	3.4	20
137	[62] Assay and detection of the molybdenum cofactor. Methods in Enzymology, 1986, 122, 399-412.	1.0	19
138	Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethyl sulfoxide reductase. Journal of Biological Inorganic Chemistry, 2003, 8, 95-104.	2.6	19
139	Selenite binding to carbon monoxide oxidase from Pseudomonas carboxydovorans. Selenium binds covalently to the protein and activates specifically the COmethylene blue reaction Journal of Biological Chemistry, 1984, 259, 5612-5617.	3.4	19
140	Hepatic sulfite oxidase. Biochimica Et Biophysica Acta - Biomembranes, 1974, 370, 399-409.	2.6	18
141	Studies of the Mo(V) center of the Y343F mutant of human sulfite oxidase by variable frequency pulsed EPR spectroscopy. Inorganica Chimica Acta, 2008, 361, 941-946.	2.4	18
142	The Interaction of Arsenite with the Molybdenum Center of Chicken Liver Xanthine Dehydrogenase. Bioinorganic Chemistry, 1978, 8, 439-444.	1.1	17
143	The Pathogenic Human Sulfite Oxidase Mutants G473D and A208D Are Defective in Intramolecular Electron Transferâ€. Biochemistry, 2005, 44, 13734-13743.	2.5	17
144	The folate cofactor of Escherichia coli DNA photolyase acts catalytically Journal of Biological Chemistry, 1990, 265, 18656-18662.	3.4	16

#	Article	IF	CITATIONS
145	Biochemistry of the Molybdenum Cofactors. ACS Symposium Series, 1993, , 38-49.	0.5	15
146	The molybdenum cofactors $\hat{a} \in \text{``perspective from crystal structure.}$ Journal of Biological Inorganic Chemistry, 1997, 2, 786-789.	2.6	15
147	Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction. Biochemistry, 2012, 51, 1134-1147.	2.5	14
148	An HPLC assay for detection of elevated urinaryS-sulphocysteine, a metabolic marker of sulphite oxidase deficiency. Journal of Inherited Metabolic Disease, 1995, 18, 40-47.	3.6	12
149	Chemistry and Biology of the Molybdenum Cofactors. Advances in Experimental Medicine and Biology, 1993, 338, 355-362.	1.6	9
150	Nature of Halide Binding to the Molybdenum Site of Sulfite Oxidase. Inorganic Chemistry, 2011, 50, 9406-9413.	4.0	8
151	The Oxidation of Sulphite in Animal Systems. Novartis Foundation Symposium, 1980, , 119-133.	1.1	7
152	Molybdopterin-problems and perspectives. BioFactors, 1988, 1, 273-8.	5.4	5
153	Molybdopterin Biosynthesis in Man. Properties of the Converting Factor in Liver Tissue from a Molybdenum Cofactor Deficient Patient. Advances in Experimental Medicine and Biology, 1993, 338, 379-382.	1.6	2
154	Chemistry and Biology of Copper-Chelatin. Advances in Experimental Medicine and Biology, 1976, 74, 565-574.	1.6	2
155	BIOSYNTHESIS AND PROCESSING OF Mo COFACTORS. Biochemical Society Transactions, 1997, 25, 514S-514S.	3.4	O