
## Fu Chen

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11182454/publications.pdf Version: 2024-02-01



FU CHEN

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict<br>protein–protein binding free energies and re-rank binding poses generated by protein–protein<br>docking. Physical Chemistry Chemical Physics, 2016, 18, 22129-22139. | 2.8  | 350       |
| 2  | Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics, 2018, 20, 14450-14460.                                           | 2.8  | 243       |
| 3  | Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding<br>affinities and binding poses for protein–peptide complexes. Physical Chemistry Chemical Physics, 2019,<br>21, 10135-10145.                                   | 2.8  | 96        |
| 4  | Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein–RNA complexes. Rna, 2018, 24, 1183-1194.                                                                                                    | 3.5  | 84        |
| 5  | Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling<br>and variable dielectric model on protein–protein Interactions. Physical Chemistry Chemical Physics,<br>2019, 21, 18958-18969.                                | 2.8  | 80        |
| 6  | Modeling non-monotonic dose–response relationships: Model evaluation and hormetic quantities exploration. Ecotoxicology and Environmental Safety, 2013, 89, 130-136.                                                                                           | 6.0  | 57        |
| 7  | HawkRank: a new scoring function for protein–protein docking based on weighted energy terms.<br>Journal of Cheminformatics, 2017, 9, 66.                                                                                                                       | 6.1  | 48        |
| 8  | Antioxidant defence system is responsible for the toxicological interactions of mixtures: A case study on PFOS and PFOA in Daphnia magna. Science of the Total Environment, 2019, 667, 435-443.                                                                | 8.0  | 48        |
| 9  | Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis spQ67. Environmental Toxicology and Pharmacology, 2015, 39, 447-456.                    | 4.0  | 33        |
| 10 | Application of the Concentration Addition Model in the Assessment of Chemical Mixture Toxicity.<br>Acta Chimica Sinica, 2013, 71, 1335.                                                                                                                        | 1.4  | 30        |
| 11 | Prediction of luciferase inhibitors by the high-performance MIEC-GBDT approach based on interaction energetic patterns. Physical Chemistry Chemical Physics, 2017, 19, 10163-10176.                                                                            | 2.8  | 27        |
| 12 | Concentration addition prediction for a multiple-component mixture containing no effect chemicals.<br>Analytical Methods, 2015, 7, 9912-9917.                                                                                                                  | 2.7  | 25        |
| 13 | Complex toxicological interaction between ionic liquids and pesticides to Vibrio qinghaiensis spQ67.<br>RSC Advances, 2016, 6, 21012-21018.                                                                                                                    | 3.6  | 19        |
| 14 | Predicting the hormesis and toxicological interaction of mixtures by an improved inverse distance weighted interpolation. Environment International, 2019, 130, 104892.                                                                                        | 10.0 | 18        |
| 15 | Predicting the Time-dependent Toxicities of Three Triazine Herbicide Mixtures to <i>V.<br/>qinghaiensis</i> sp. Q67 Using the Extended Concentration Addition Model. Acta Chimica Sinica, 2014,<br>72, 56.                                                     | 1.4  | 17        |
| 16 | pH affects the hormesis profiles of personal care product components on luminescence of the bacteria Vibrio qinghaiensis spQ67. Science of the Total Environment, 2020, 713, 136656.                                                                           | 8.0  | 15        |
| 17 | Mixture Toxicities of Three Pesticides Having Different Timeâ€Toxicity Profiles. Chinese Journal of Chemistry, 2014, 32, 545-552.                                                                                                                              | 4.9  | 14        |
| 18 | Blocking the entrance of AMP pocket results in hormetic stimulation of imidazolium-based ionic liquids to firefly luciferase. Chemosphere, 2015, 132, 108-113.                                                                                                 | 8.2  | 13        |

Fu Chen

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling. RSC Advances, 2014, 4, 32256-32262.                   | 3.6  | 12        |
| 20 | Hormesis of some organic solvents on Vibrio qinghaiensis spQ67 from first binding to the β subunit of luciferase. RSC Advances, 2017, 7, 37636-37642.                              | 3.6  | 12        |
| 21 | Nitrifying biomass can retain its acclimation to 2,4,6-trichlorophenol. Water Research, 2020, 185, 116285.                                                                         | 11.3 | 12        |
| 22 | BDE-99 Disrupts the Photoreceptor Patterning of Zebrafish Larvae via Transcription Factor <i>six7</i> .<br>Environmental Science & Technology, 2022, 56, 5673-5683.                | 10.0 | 11        |
| 23 | Molecular Modeling Study on the Three-dimensional Structure of the Luciferase Protein<br>in <i>Vibrio-qinghaiensis</i> >pQ67. Acta Chimica Sinica, 2013, 71, 1035.                 | 1.4  | 9         |
| 24 | Recovery of the nitrifying ability of acclimated biomass exposed to para-nitrophenol. Science of the Total Environment, 2021, 781, 146697.                                         | 8.0  | 8         |
| 25 | A novel method based on similarity and triangulation for predicting the toxicities of various binary mixtures. Journal of Theoretical Biology, 2019, 480, 56-64.                   | 1.7  | 7         |
| 26 | Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations. Journal of Chemical Theory and Computation, 2017, 13, 1827-1836. | 5.3  | 6         |
| 27 | Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis spQ67.<br>Biology, 2021, 10, 638.                                                             | 2.8  | 5         |
| 28 | Bioavailable electron donors from ultrasound-treated biomass for stimulating denitrification.<br>Journal of Environmental Management, 2019, 250, 109533.                           | 7.8  | 4         |