List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11182433/publications.pdf Version: 2024-02-01

H FRIC XII

#	Article	IF	CITATIONS
1	Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017, 38, 1205-1235.	2.8	1,094
2	Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368, 1499-1504.	6.0	950
3	Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition. Cell, 2002, 110, 93-105.	13.5	747
4	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 2015, 523, 561-567.	13.7	683
5	DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504, 401-405.	13.7	660
6	A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462, 602-608.	13.7	608
7	Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacologica Sinica, 2015, 36, 3-23.	2.8	602
8	Structural Features for Functional Selectivity at Serotonin Receptors. Science, 2013, 340, 615-619.	6.0	600
9	Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature, 2002, 415, 813-817.	13.7	598
10	Identification of a Physiologically Relevant Endogenous Ligand for PPARα in Liver. Cell, 2009, 138, 476-488.	13.5	589
11	Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, 500, 486-489.	13.7	541
12	FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science, 2011, 331, 1621-1624.	6.0	504
13	Structural Basis for Molecular Recognition at Serotonin Receptors. Science, 2013, 340, 610-614.	6.0	454
14	Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science, 2012, 335, 85-88.	6.0	439
15	Identification of Ligands for DAF-12 that Govern Dauer Formation and Reproduction in C. elegans. Cell, 2006, 124, 1209-1223.	13.5	414
16	Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell, 2017, 170, 457-469.e13.	13.5	344
17	FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism, 2011, 13, 729-738.	7.2	331
18	Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARÎ)—synthesis and biological activity. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1517-1521.	1.0	301

#	Article	IF	CITATIONS
19	Identification of a hormonal basis for gallbladder filling. Nature Medicine, 2006, 12, 1253-1255.	15.2	257
20	Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature, 2015, 525, 269-273.	13.7	248
21	Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5034-5039.	3.3	232
22	Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature, 2018, 558, 553-558.	13.7	230
23	Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAl2 and strigolactone-signaling DWARF14. Cell Research, 2013, 23, 436-439.	5.7	222
24	Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science, 2022, 375, 1048-1053.	6.0	216
25	Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1. Molecular Cell, 2005, 17, 491-502.	4.5	198
26	Structure and dynamics of the active human parathyroid hormone receptor-1. Science, 2019, 364, 148-153.	6.0	185
27	Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor. Molecular Cell, 2005, 19, 367-380.	4.5	180
28	LRP5 and LRP6 in development and disease. Trends in Endocrinology and Metabolism, 2013, 24, 31-39.	3.1	177
29	Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacologica Sinica, 2014, 35, 567-584.	2.8	174
30	Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid–Activated Receptor. PLoS Biology, 2008, 6, e227.	2.6	171
31	EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacologica Sinica, 2014, 35, 161-174.	2.8	168
32	An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Research, 2013, 23, 1043-1054.	5.7	167
33	Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell, 2020, 180, 645-654.e13.	13.5	167
34	Molecular mechanism of GPCR-mediated arrestin activation. Nature, 2018, 557, 452-456.	13.7	166
35	Activation of Nuclear Receptors. Structure, 2003, 11, 741-746.	1.6	161
36	Molecular recognition of nitrated fatty acids by PPARÎ ³ . Nature Structural and Molecular Biology, 2008, 15, 865-867.	3.6	161

#	Article		CITATIONS
37	Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21259-21264.	3.3	160
38	A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Research, 2019, 29, 971-983.	5.7	155
39	MicroRNA 34a Inhibits Beige and Brown Fat Formation in Obesity in Part by Suppressing Adipocyte Fibroblast Growth Factor 21 Signaling and SIRT1 Function. Molecular and Cellular Biology, 2014, 34, 4130-4142.	1.1	153
40	Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Research, 2015, 25, 1219-1236.	5.7	152
41	Covalent Peroxisome Proliferator-activated Receptor Î ³ Adduction by Nitro-fatty Acids. Journal of Biological Chemistry, 2010, 285, 12321-12333.	1.6	151
42	Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Research, 2015, 25, 50-66.	5.7	147
43	Identification and mechanism of ABA receptor antagonism. Nature Structural and Molecular Biology, 2010, 17, 1102-1108.	3.6	145
44	Molecular Recognition of Corticotropin-releasing Factor by Its G-protein-coupled Receptor CRFR1. Journal of Biological Chemistry, 2008, 283, 32900-32912.	1.6	141
45	Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Science Advances, 2015, 1, e1500107.	4.7	140
46	Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 2021, 184, 931-942.e18.	13.5	140
47	Structural insights into the lipid and ligand regulation of serotonin receptors. Nature, 2021, 592, 469-473.	13.7	138
48	Structure and Physiological Regulation of AMPK. International Journal of Molecular Sciences, 2018, 19, 3534.	1.8	136
49	Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nature Communications, 2020, 11, 4121.	5.8	136
50	Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16137-16142.	3.3	134
51	Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides. Journal of Biological Chemistry, 2009, 284, 28382-28391.	1.6	129
52	Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nature Communications, 2020, 11, 807.	5.8	127
53	Structural basis for autorepression of retinoid X receptor by tetramer formation and the AF-2 helix. Genes and Development, 2000, 14, 2229-2241.	2.7	120
54	Identification and Mechanism of 10-Carbon Fatty Acid as Modulating Ligand of Peroxisome Proliferator-activated Receptors. Journal of Biological Chemistry, 2012, 287, 183-195.	1.6	119

#	Article	IF	CITATIONS
55	Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9138-9143.	3.3	117
56	Substituted 2-[(4-Aminomethyl)phenoxy]-2-methylpropionic Acid PPARα Agonists. 1. Discovery of a Novel Series of Potent HDLc Raising Agents. Journal of Medicinal Chemistry, 2007, 50, 685-695.	2.9	115
57	Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacologica Sinica, 2012, 33, 300-311.	2.8	112
58	One-pot cascade synthesis of N-methoxyisoquinolinediones via Rh(<scp>iii</scp>)-catalyzed carbenoid insertion C–H activation/cyclization. Chemical Communications, 2015, 51, 668-671.	2.2	110
59	Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin–proteasomal degradation. Genes and Development, 2009, 23, 986-996.	2.7	109
60	Rhodium(iii)-catalyzed C2-selective carbenoid functionalization and subsequent C7-alkenylation of indoles. Chemical Communications, 2014, 50, 6483.	2.2	109
61	The Nuclear Xenobiotic Receptor CAR. Molecular Cell, 2004, 16, 893-905.	4.5	108
62	Combining chemical and genetic approaches to increase drought resistance in plants. Nature Communications, 2017, 8, 1183.	5.8	108
63	A dysregulated acetyl/ <scp>SUMO</scp> switch of <scp>FXR</scp> promotes hepatic inflammation in obesity. EMBO Journal, 2015, 34, 184-199.	3.5	106
64	Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nature Structural and Molecular Biology, 2021, 28, 319-325.	3.6	104
65	RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 47-53.	1.0	102
66	Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol. Molecular and Cellular Biology, 2008, 28, 1915-1923.	1.1	99
67	Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9505-9510.	3.3	92
68	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	4.5	92
69	Structure and function of Norrin in assembly and activation of a Frizzled 4–Lrp5/6 complex. Genes and Development, 2013, 27, 2305-2319.	2.7	91
70	Structural basis for RNA recognition by a dimeric PPR-protein complex. Nature Structural and Molecular Biology, 2013, 20, 1377-1382.	3.6	89
71	Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nature Communications, 2020, 11, 885.	5.8	85
72	Rhodium(<scp>iii</scp>)-catalyzed C–H activation and intermolecular annulation with terminal alkynes: from indoles to carbazoles. Chemical Communications, 2015, 51, 2925-2928.	2.2	83

#	Article	IF	CITATIONS
73	Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-activated Androgen Receptor. Journal of Biological Chemistry, 2010, 285, 9161-9171.	1.6	80
74	Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature, 2018, 560, 666-670.	13.7	77
75	Structures and mechanism for the design of highly potent glucocorticoids. Cell Research, 2014, 24, 713-726.	5.7	76
76	Structural basis for agonism and antagonism of hepatocyte growth factor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13264-13269.	3.3	75
77	Mild and Efficient Ir(III)-Catalyzed Direct C–H Alkynylation of N-Phenoxyacetamides with Terminal Alkyne. ACS Catalysis, 2015, 5, 6999-7003.	5.5	75
78	Structural Basis for Hormone Recognition by the Human CRFR2α G Protein-coupled Receptor. Journal of Biological Chemistry, 2010, 285, 40351-40361.	1.6	73
79	Cytoplasmic Tyrosine Phosphatase Shp2 Coordinates Hepatic Regulation of Bile Acid and FGF15/19 Signaling to Repress Bile Acid Synthesis. Cell Metabolism, 2014, 20, 320-332.	7.2	72
80	Alteration of a Single Amino Acid in Peroxisome Proliferator-Activated Receptor-α (PPARα) Generates a PPARδPhenotype. Molecular Endocrinology, 2000, 14, 733-740.	3.7	71
81	Identification of a Lysosomal Pathway That Modulates Glucocorticoid Signaling and the Inflammatory Response. Science Signaling, 2011, 4, ra44.	1.6	70
82	Alzheimer's disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discovery, 2016, 2, 16026.	3.1	70
83	Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Molecular Cell, 2020, 77, 669-680.e4.	4.5	70
84	The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor. Journal of Biological Chemistry, 2011, 286, 2877-2885.	1.6	69
85	Rhodium(III)â€Catalyzed Regioselective Direct Câ€2 Alkenylation of Indoles Assisted by the Removable Nâ€{2â€Pyrimidyl) Group. Advanced Synthesis and Catalysis, 2014, 356, 137-143.	2.1	67
86	Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1720-1725.	3.3	67
87	Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacologica Sinica, 2022, 43, 3021-3033.	2.8	65
88	Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Current Opinion in Structural Biology, 2010, 20, 722-729.	2.6	64
89	A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Science Advances, 2017, 3, e1601217.	4.7	64
90	Rh(<scp>iii</scp>)-catalyzed and alcohol-involved carbenoid C–H insertion into N-phenoxyacetamides using α-diazomalonates. Chemical Communications, 2015, 51, 5868-5871.	2.2	63

#	Article	IF	CITATIONS
91	Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell Discovery, 2018, 4, 12.	3.1	63
92	Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors. Journal of Biological Chemistry, 2016, 291, 15119-15130.	1.6	61
93	Structural and Biochemical Basis for the Binding Selectivity of Peroxisome Proliferator-activated Receptor Î ³ to PGC-1α. Journal of Biological Chemistry, 2008, 283, 19132-19139.	1.6	59
94	Structure and activation of rhodopsin. Acta Pharmacologica Sinica, 2012, 33, 291-299.	2.8	59
95	Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors. PLoS ONE, 2011, 6, e19682.	1.1	58
96	Understanding the GPCR biased signaling through G protein and arrestin complex structures. Current Opinion in Structural Biology, 2017, 45, 150-159.	2.6	57
97	Structural basis for activation of the growth hormone-releasing hormone receptor. Nature Communications, 2020, 11, 5205.	5.8	57
98	Synthetic antibodies against BRIL as universal fiducial marks for singleâ^'particle cryoEM structure determination of membrane proteins. Nature Communications, 2020, 11, 1598.	5.8	57
99	Tyrosine Agonists Reverse the Molecular Defects Associated with Dominant-Negative Mutations in Human Peroxisome Proliferator-Activated Receptor γ. Endocrinology, 2004, 145, 1527-1538.	1.4	55
100	A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14592-14597.	3.3	55
101	Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nature Communications, 2018, 9, 2590.	5.8	55
102	Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation. Journal of Biological Chemistry, 2010, 285, 12435-12444.	1.6	54
103	Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nature Chemical Biology, 2021, 17, 1238-1244.	3.9	54
104	Structure of a PLS-class Pentatricopeptide Repeat Protein Provides Insights into Mechanism of RNA Recognition. Journal of Biological Chemistry, 2013, 288, 31540-31548.	1.6	53
105	Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacologica Sinica, 2015, 36, 895-907.	2.8	52
106	A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. Cell Research, 2020, 30, 1098-1108.	5.7	52
107	Structures of full-length glycoprotein hormone receptor signalling complexes. Nature, 2021, 598, 688-692.	13.7	52
108	The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer. Acta Pharmacologica Sinica, 2016, 37, 1259-1272.	2.8	51

#	Article	IF	CITATIONS
109	X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 2016, 3, 160021.	2.4	51
110	Structures of the human dopamine D3 receptor-Gi complexes. Molecular Cell, 2021, 81, 1147-1159.e4.	4.5	51
111	Identification of PTP lf as an autophagic phosphatase. Journal of Cell Science, 2011, 124, 812-819.	1.2	50
112	Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization. Genes and Development, 2017, 31, 916-926.	2.7	50
113	Family reunion of nuclear hormone receptors: structures, diseases, and drug discovery. Acta Pharmacologica Sinica, 2015, 36, 1-2.	2.8	48
114	Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nature Communications, 2022, 13, 1057.	5.8	46
115	Subtype Specific Effects of Peroxisome Proliferator-Activated Receptor Ligands on Corepressor Affinity. Biochemistry, 2003, 42, 9278-9287.	1.2	44
116	Interactions that determine the assembly of a retinoid X receptor/corepressor complex. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5842-5847.	3.3	42
117	FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction of β-Klotho. Molecular Endocrinology, 2016, 30, 92-103.	3.7	42
118	Structure of an AMPK complex in an inactive, ATP-bound state. Science, 2021, 373, 413-419.	6.0	42
119	Structural biology of G proteinâ€coupled receptor signaling complexes. Protein Science, 2019, 28, 487-501.	3.1	41
120	Small Heterodimer Partner and Fibroblast Growth Factor 19ÂInhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption. Gastroenterology, 2019, 156, 1052-1065.	0.6	41
121	Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nature Communications, 2021, 12, 3763.	5.8	41
122	Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Research, 2017, 27, 728-747.	5.7	40
123	Development of highly potent glucocorticoids for steroid-resistant severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6932-6937.	3.3	40
124	Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. Journal of Biological Chemistry, 2017, 292, 12653-12666.	1.6	39
125	AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors. Acta Pharmacologica Sinica, 2023, 44, 1-7.	2.8	39
126	Rhodium(iii)-catalyzed regioselective C2-amidation of indoles with N-(2,4,6-trichlorobenzoyloxy)amides and its synthetic application to the development of a novel potential PPARÎ ³ modulator. Organic and Biomolecular Chemistry, 2014, 12, 6831-6836.	1,5	38

#	Article	IF	CITATIONS
127	Structural mechanism of calcium-mediated hormone recognition and GÎ ² interaction by the human melanocortin-1 receptor. Cell Research, 2021, 31, 1061-1071.	5.7	36
128	Molecular basis for kinin selectivity and activation of the human bradykinin receptors. Nature Structural and Molecular Biology, 2021, 28, 755-761.	3.6	36
129	Bile Acid Signal-induced Phosphorylation of Small Heterodimer Partner by Protein Kinase Cζ Is Critical for Epigenomic Regulation of Liver Metabolic Genes. Journal of Biological Chemistry, 2013, 288, 23252-23263.	1.6	35
130	Structure of the PRC2 complex and application to drug discovery. Acta Pharmacologica Sinica, 2017, 38, 963-976.	2.8	35
131	The Crystal Structure of the Orphan Nuclear Receptor NR2E3/PNR Ligand Binding Domain Reveals a Dimeric Auto-Repressed Conformation. PLoS ONE, 2013, 8, e74359.	1.1	35
132	Structural perspective of class B1 GPCR signaling. Trends in Pharmacological Sciences, 2022, 43, 321-334.	4.0	35
133	Structural and Functional Study of d-Glucuronyl C5-epimerase. Journal of Biological Chemistry, 2015, 290, 4620-4630.	1.6	34
134	Ligand-Dependent Regulation of the Activity of the Orphan Nuclear Receptor, Small Heterodimer Partner (SHP), in the Repression of Bile Acid Biosynthetic <i>CYP7A1</i> and <i>CYP8B1</i> Genes. Molecular Endocrinology, 2011, 25, 1159-1169.	3.7	33
135	Structural basis of the Norrin-Frizzled 4 interaction. Cell Research, 2015, 25, 1078-1081.	5.7	33
136	Structural Conservation of Ligand Binding Reveals a Bile Acid-like Signaling Pathway in Nematodes. Journal of Biological Chemistry, 2012, 287, 4894-4903.	1.6	32
137	Protein Conformation Ensembles Monitored by HDX Reveal a Structural Rationale for Abscisic Acid Signaling Protein Affinities and Activities. Structure, 2013, 21, 229-235.	1.6	31
138	Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3- <i>d</i>] Pyrimidine Antifolates with Heteroatom Bridge Substitutions via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. Journal of Medicinal Chemistry, 2016, 59, 7856-7876.	2.9	30
139	Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. ELife, 2021, 10, .	2.8	30
140	Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. Journal of Biological Chemistry, 2019, 294, 953-967.	1.6	29
141	An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain. Cell Discovery, 2016, 2, 16042.	3.1	28
142	Ligand-Dependent and -Independent Regulation of PPARÎ ³ and Orphan Nuclear Receptors. Science Signaling, 2008, 1, pe52.	1.6	27
143	Mutations of Glucocorticoid Receptor Differentially Affect AF2 Domain Activity in a Steroid-Selective Manner To Alter the Potency and Efficacy of Gene Induction and Repression. Biochemistry, 2008, 47, 7648-7662.	1.2	26
144	Structural insights into gene repression by the orphan nuclear receptor SHP. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 839-844.	3.3	26

#	Article	IF	CITATIONS
145	Dimerization of the transmembrane domain of amyloid precursor protein is determined by residues around the Î ³ -secretase cleavage sites. Journal of Biological Chemistry, 2017, 292, 15826-15837.	1.6	26
146	H2O2 Inhibits ABA-Signaling Protein Phosphatase HAB1. PLoS ONE, 2014, 9, e113643.	1.1	25
147	Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors. Journal of Biological Chemistry, 2017, 292, 9865-9881.	1.6	24
148	PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis. Molecular and Cellular Biology, 2014, 34, 1956-1965.	1.1	22
149	Benzoquinone ansamycin 17AAG binds to mitochondrial voltage-dependent anion channel and inhibits cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4105-4110.	3.3	20
150	Abscisic Acid Signaling: Thermal Stability Shift Assays as Tool to Analyze Hormone Perception and Signal Transduction. PLoS ONE, 2012, 7, e47857.	1.1	19
151	Development of "Plug and Play―Fiducial Marks for Structural Studies of GPCR Signaling Complexes by Single-Particle Cryo-EM. Structure, 2019, 27, 1862-1874.e7.	1.6	19
152	Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Genes and Development, 2015, 29, 440-450.	2.7	18
153	Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases. Plant Signaling and Behavior, 2012, 7, 581-588.	1.2	17
154	Molecular insights into differentiated ligand recognition of the human parathyroid hormone receptor 2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	17
155	A structural snapshot of the rhodopsin–arrestin complex. FEBS Journal, 2016, 283, 816-821.	2.2	16
156	Structure determination and activity manipulation of the turfgrass ABA receptor FePYR1. Scientific Reports, 2017, 7, 14022.	1.6	16
157	Identification of a novel selective PPARγ ligand with a unique binding mode and improved therapeutic profile in vitro. Scientific Reports, 2017, 7, 41487.	1.6	15
158	Ligand-induced activation of ERK1/2 signaling by constitutively active Gs-coupled 5-HT receptors. Acta Pharmacologica Sinica, 2019, 40, 1157-1167.	2.8	15
159	Identification and structural insight of an effective PPARÎ ³ modulator with improved therapeutic index for anti-diabetic drug discovery. Chemical Science, 2020, 11, 2260-2268.	3.7	15
160	Structural Basis of TPR-Mediated Oligomerization and Activation of Oncogenic Fusion Kinases. Structure, 2017, 25, 867-877.e3.	1.6	14
161	Modulation of Î ² -Catenin Signaling by Glucagon Receptor Activation. PLoS ONE, 2012, 7, e33676.	1.1	14
162	Couple Dynamics: PPAR $\hat{1}^3$ and Its Ligand Partners. Structure, 2012, 20, 2-4.	1.6	13

#	Article	IF	CITATIONS
163	A fast, open source implementation of adaptive biasing potentials uncovers a ligand design strategy for the chromatin regulator BRD4. Journal of Chemical Physics, 2016, 145, 154113.	1.2	13
164	Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK). Journal of Biological Chemistry, 2018, 293, 16994-17007.	1.6	13
165	Constitutive signal bias mediated by the human GHRHR splice variant 1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
166	Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Cellular and Molecular Life Sciences, 2015, 72, 1045-1058.	2.4	12
167	A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2. Nature Communications, 2022, 13, 2272.	5.8	12
168	Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A. Cell Discovery, 2022, 8, .	3.1	12
169	Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment. Science Advances, 2020, 6, eaaz8031.	4.7	11
170	A new era for GPCR research: structures, biology and drug discovery. Acta Pharmacologica Sinica, 2012, 33, 289-290.	2.8	9
171	Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. Journal of Steroid Biochemistry and Molecular Biology, 2016, 157, 27-40.	1.2	9
172	Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Protein Expression and Purification, 2010, 71, 21-27.	0.6	8
173	Ligand structural motifs can decouple glucocorticoid receptor transcriptional activation from target promoter occupancy. Biochemical and Biophysical Research Communications, 2012, 420, 839-844.	1.0	8
174	Discovery of a highly potent glucocorticoid for asthma treatment. Cell Discovery, 2015, 1, .	3.1	8
175	Crystallization scale purification of α7 nicotinic acetylcholine receptor from mammalian cells using a BacMam expression system. Acta Pharmacologica Sinica, 2015, 36, 1013-1023.	2.8	7
176	High yield and efficient expression and purification of the human 5-HT3A receptor. Acta Pharmacologica Sinica, 2015, 36, 1024-1032.	2.8	7
177	Functional role of the three conserved cysteines in the N domain of visual arrestin-1. Journal of Biological Chemistry, 2017, 292, 12496-12502.	1.6	7
178	A Highly Sensitive Non-Radioactive Activity Assay for AMP-Activated Protein Kinase (AMPK). Methods and Protocols, 2018, 1, 3.	0.9	6
179	Enzalutamide-induced and PTH1R-mediated TGFBR2 degradation in osteoblasts confers resistance in prostate cancer bone metastases. Cancer Letters, 2022, 525, 170-178.	3.2	6
180	Efficient Synthesis of Functionalized 1-oxo-1-phenyl-2-acetic Acids through Ru(II)-catalyzed Transfer Hydrogenation. Bulletin of the Korean Chemical Society, 2013, 34, 3143-3146.	1.0	5

		H ERIC XU		
#	Article		IF	CITATIONS
181	Structure Modeling Using Genetically Engineered Crosslinking. Cell, 2013, 155, 1207-1208.		13.5	3
182	Structural Mechanisms of Ligand-Mediated Signaling by Nuclear Receptors. , 2003, , 21-24.			0
183	Î ³ -secretase epsilon-cleavage assay. Bio-protocol, 2017, 7, .		0.2	0
184	The Arrestin-Receptor Complex: Exciting Answers and New Questions. , 2017, , 175-184.			0