Andy Liaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11182114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Screening to Identify Small Molecules That Selectively Inhibit APOL1 Protein Level in Podocytes. SLAS Discovery, 2021, 26, 1225-1237.	1.4	4
2	Nearest Neighbor Gaussian Process for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling, 2020, 60, 4653-4663.	2.5	4
3	Experimental Error, Kurtosis, Activity Cliffs, and Methodology: What Limits the Predictivity of Quantitative Structure–Activity Relationship Models?. Journal of Chemical Information and Modeling, 2020, 60, 1969-1982.	2.5	34
4	Deep Dive into Machine Learning Models for Protein Engineering. Journal of Chemical Information and Modeling, 2020, 60, 2773-2790.	2.5	134
5	Building Quantitative Structure–Activity Relationship Models Using Bayesian Additive Regression Trees. Journal of Chemical Information and Modeling, 2019, 59, 2642-2655.	2.5	9
6	siRNA-mediated inhibition of SREBP cleavage-activating protein reduces dyslipidemia in spontaneously dysmetabolic rhesus monkeys. Metabolism: Clinical and Experimental, 2017, 71, 202-212.	1.5	8
7	Demystifying Multitask Deep Neural Networks for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling, 2017, 57, 2490-2504.	2.5	178
8	Extreme Gradient Boosting as a Method for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling, 2016, 56, 2353-2360.	2.5	308
9	Dose-dependent effects of siRNA-mediated inhibition of SCAP on PCSK9, LDLR, and plasma lipids in mouse and rhesus monkey. Journal of Lipid Research, 2016, 57, 2150-2162.	2.0	23
10	Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling, 2015, 55, 263-274.	2.5	840
11	Evaluation of Cynomolgus Monkeys for the Identification of Endogenous Biomarkers for Hepatic Transporter Inhibition and as a Translatable Model to Predict Pharmacokinetic Interactions with Statins in Humans. Drug Metabolism and Disposition, 2015, 43, 851-863.	1.7	55
12	High Resolution Discovery Proteomics Reveals Candidate Disease Progression Markers of Alzheimer's Disease in Human Cerebrospinal Fluid. PLoS ONE, 2015, 10, e0135365.	1.1	57
13	Evaluation of early biomarkers of muscle anabolic response to testosterone. Journal of Cachexia, Sarcopenia and Muscle, 2011, 2, 45-56.	2.9	29
14	Application of an End-to-End Biomarker Discovery Platform to Identify Target Engagement Markers in Cerebrospinal Fluid by High Resolution Differential Mass Spectrometry. Journal of Proteome Research, 2010, 9, 1392-1401.	1.8	45
15	Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7728-7733.	3.3	85
16	Potential biomarkers of muscle injury after eccentric exercise. Biomarkers, 2010, 15, 249-258.	0.9	13
17	Generating hypotheses about molecular structure–activity relationships (SARs) by solving an optimization problem. Statistical Analysis and Data Mining, 2009, 2, 161-174.	1.4	1
18	Differential Mass Spectrometry of Rat Plasma Reveals Proteins That Are Responsive to 17Î2-Estradiol and a Selective Estrogen Recentor Modulator PPT, Journal of Proteome Research, 2008, 7, 4373-4383	1.8	11

Andy Liaw

#	Article	IF	CITATIONS
19	Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems, 2006, 9, 181-199.	1.6	1,665
20	Boosting:Â An Ensemble Learning Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Modeling, 2005, 45, 786-799.	2.5	183
21	Application of Breiman's Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules. Lecture Notes in Computer Science, 2004, , 334-343.	1.0	129
22	Random Forest:  A Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences, 2003, 43, 1947-1958.	2.8	2,582
23	Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data. Journal of Biomolecular Screening, 2003, 8, 624-633.	2.6	64
24	Improved Statistical Methods for Hit Selection in High-Throughput Screening. Journal of Biomolecular Screening, 2003, 8, 634-647.	2.6	306