William L Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11181418/publications.pdf

Version: 2024-02-01

61857 30848 10,720 118 43 102 citations h-index g-index papers 118 118 118 5849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geochronology and geochemistry of exotic blocks of Cadomian crust from the salt diapirs of SE Zagros: the Chah-Banu example. International Geology Review, 2022, 64, 1409-1430.	1.1	8
2	Detrital zircon provenance of Permian to Triassic Gondwana sequences, Zealandia and eastern Australia. New Zealand Journal of Geology, and Geophysics, 2022, 65, 457-469.	1.0	5
3	Geochemical variability among stratiform chromitites and ultramafic rocks from Western Makran, South Iran. Lithos, 2022, 412-413, 106591.	0.6	3
4	Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions To Mineralogy and Petrology, 2022, 177, 1.	1.2	6
5	Probing the Southern African Lithosphere With Magnetotellurics: 2. Linking Electrical Conductivity, Composition, and Tectonomagmatic Evolution. Journal of Geophysical Research: Solid Earth, 2022, 127,	1.4	10
6	Apatite halogens and Sr-O and zircon Hf-O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology, 2022, 605, 120924.	1.4	40
7	Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. Journal of Petrology, 2021, 62, .	1.1	9
8	Siderophile and chalcophile elements in spinels, sulphides and native Ni in strongly metasomatised xenoliths from the Bultfontein kimberlite (South Africa). Lithos, 2021, 380-381, 105880.	0.6	10
9	Ti3+ in corundum traces crystal growth in a highly reduced magma. Scientific Reports, 2021, 11, 2439.	1.6	10
10	Deep lithosphere of the North China Craton archives the fate of the Paleo-Asian Ocean. Earth-Science Reviews, 2021, 215, 103554.	4.0	10
11	Melting Dynamics of Late Cretaceous Lamprophyres in Central Asia Suggest a Mechanism to Explain Many Continental Intraplate Basaltic Suite Magmatic Provinces. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021	1.4	7
12	Metamorphic history and Neoarchean–Paleoproterozoic crustal growth of the central Trans-North China Orogen: Evidence from granulite- to amphibolite-facies rocks of the Hengshan complex. Gondwana Research, 2021, 93, 162-183.	3.0	7
13	Melt Migration and Interaction in a Dunite Channel System within Oceanic Forearc Mantle: the Yushigou Harzburgite–Dunite Associations, North Qilian Ophiolite (NW China). Journal of Petrology, 2021, 62, .	1.1	10
14	Open System Re-Os Isotope Behavior in Platinum-Group Minerals during Laterization?. Minerals (Basel,) Tj ETQq(0 0 0 rgBT 0.8	/Ogerlock 10
15	Reworking of old continental lithosphere: Unradiogenic Os and decoupled Hf Nd isotopes in sub-arc mantle pyroxenites. Lithos, 2020, 354-355, 105346.	0.6	9
16	Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 2020, 531, 115969.	1.8	19
17	Re-Os Isotope Systematics of Sulfides in Chromitites and Host Lherzolites of the Andaman Ophiolite, India. Minerals (Basel, Switzerland), 2020, 10, 686.	0.8	6
18	Oceanization of the subcontinental lithospheric mantle recorded in the Yunzhug ophiolite, Central Tibetan Plateau. Lithos, 2020, 370-371, 105612.	0.6	6

#	Article	IF	CITATIONS
19	Tracking the birth and growth of Cimmeria: Geochronology and origins of intrusive rocks from NW Iran. Gondwana Research, 2020, 87, 188-206.	3.0	5
20	Langshan basalts record recycled Paleo-Asian oceanic materials beneath the northwest North China Craton. Chemical Geology, 2019, 524, 88-103.	1.4	21
21	Mud Tank Zircon: Longâ€Term Evaluation of a Reference Material for Uâ€Pb Dating, Hfâ€Isotope Analysis and Trace Element Analysis. Geostandards and Geoanalytical Research, 2019, 43, 339-354.	1.7	46
22	Petrography and perovskite U-Pb age of the Katuba kimberlite, Kundelungu Plateau (D.R. Congo): Implications for regional tectonism and mineralisation. Journal of African Earth Sciences, 2019, 156, 35-43.	0.9	1
23	Similar crust beneath disrupted and intact cratons: Arguments against lower-crust delamination as a decratonization trigger. Tectonophysics, 2019, 750, 1-8.	0.9	14
24	The Earliest Subcontinental Lithospheric Mantle. , 2019, , 81-102.		6
25	Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism. Lithos, 2018, 308-309, 181-195.	0.6	16
26	Gold in the mantle: A global assessment of abundance and redistribution processes. Lithos, 2018, 322, 376-391.	0.6	41
27	<scp>GZ</scp> 7 and <scp>GZ</scp> 8 – Two Zircon Reference Materials for <scp>SIMS</scp> Uâ€Pb Geochronology. Geostandards and Geoanalytical Research, 2018, 42, 431-457.	1.7	32
28	Petrogenesis and tectonic setting of the Tuyeh-Darvar Granitoid (Northern Iran): Constraints from zircon U-Pb geochronology and Sr-Nd isotope geochemistry. Lithos, 2018, 318-319, 494-508.	0.6	9
29	Roll-Back, Extension and Mantle Upwelling Triggered Eocene Potassic Magmatism in NW Iran. Journal of Petrology, 2018, 59, 1417-1465.	1.1	47
30	Unexposed Archean components and complex post-Archean accretion/reworking processes beneath the southern Yangtze Block revealed by zircon xenocrysts from the Paleozoic lamproites, South China. Precambrian Research, 2018, 316, 174-196.	1.2	18
31	High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites. Earth and Planetary Science Letters, 2017, 463, 151-158.	1.8	32
32	Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (SerranÃa de Ronda, Spain). Ore Geology Reviews, 2017, 90, 193-209.	1.1	26
33	High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	44
34	Deformation of mantle pyroxenites provides clues to geodynamic processes in subduction zones: Case study of the Cabo Ortegal Complex, Spain. Earth and Planetary Science Letters, 2017, 472, 174-185.	1.8	24
35	Phanerozoic magma underplating and crustal growth beneath the North China Craton. Terra Nova, 2017, 29, 211-217.	0.9	11
36	Twoâ€layered oceanic lithospheric mantle in a <scp>T</scp> ibetan ophiolite produced by episodic subduction of <scp>T</scp> ethyan slabs. Geochemistry, Geophysics, Geosystems, 2017, 18, 1189-1213.	1.0	35

#	Article	IF	Citations
37	The recycling of chromitites in ophiolites from southwestern North America. Lithos, 2017, 294-295, 53-72.	0.6	28
38	Plume-subduction interaction forms large auriferous provinces. Nature Communications, 2017, 8, 843.	5.8	69
39	Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust. Lithos, 2017, 292-293, 1-14.	0.6	10
40	Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology. Lithos, 2017, 268-271, 87-101.	0.6	69
41	Crustal Evolution of NW Iran: Cadomian Arcs, Archean Fragments and the Cenozoic Magmatic Flare-Up. Journal of Petrology, 2017, 58, 2143-2190.	1.1	62
42	Primitive Arc Magmatism and Delamination: Petrology and Geochemistry of Pyroxenites from the Cabo Ortegal Complex, Spain. Journal of Petrology, 2016, 57, 1921-1954.	1.1	46
43	Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: the Role of Water in Intraplate Magmatism and Cratonic Destruction. Journal of Petrology, 2016, 57, 1279-1308.	1.1	56
44	Gold in the mantle: The role of pyroxenites. Lithos, 2016, 244, 205-217.	0.6	14
45	Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey. Journal of Asian Earth Sciences, 2016, 119, 1-19.	1.0	17
46	Lithological and age structure of the lower crust beneath the northern edge of the North China Craton: Xenolith evidence. Lithos, 2015, 216-217, 211-223.	0.6	27
47	Re–Os isotopic constraints on the source of platinum-group minerals (PGMs) from the Vestřev pyrope-rich garnet placer deposit, Bohemian Massif. Ore Geology Reviews, 2015, 68, 117-126.	1.1	8
48	Tibetan chromitites: Excavating the slab graveyard. Geology, 2015, 43, 179-182.	2.0	94
49	Episodic refertilization and metasomatism of Archean mantle: evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	33
50	Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	28
51	Fluid-present deformation aids chemical modification of chromite: Insights from chromites from Golyamo Kamenyane, SE Bulgaria. Lithos, 2015, 228-229, 78-89.	0.6	30
52	Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1ÂGa ultramafic–mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India). Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	28
53	Ancient mantle lithosphere beneath the Khanka massif in the Russian Far East: ⟨i⟩inÂsitu⟨ i⟩ Re–Os evidence. Terra Nova, 2015, 27, 277-284.	0.9	10
54	Re-Os isotopic constraints on the evolution of the Bangong-Nujiang Tethyan oceanic mantle, Central Tibet. Lithos, 2015, 224-225, 32-45.	0.6	12

#	Article	IF	CITATIONS
55	Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Research, 2015, 27, 555-574.	3.0	64
56	Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 2014, 55, 2347-2376.	1.1	48
57	Screening criteria for reliable U–Pb geochronology and oxygen isotope analysis in uranium-rich zircons: A case study from the Suzhou A-type granites, SE China. Lithos, 2014, 192-195, 180-191.	0.6	95
58	Mid-Cretaceous lamproite from the Kutch region, Gujarat, India: Genesis and tectonic implications. Gondwana Research, 2014, 26, 942-956.	3.0	19
59	Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos, 2014, 189, 127-139.	0.6	98
60	Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 2014, 189, 140-158.	0.6	170
61	Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 2014, 389, 137-152.	1.4	90
62	Complex evolution of the lower crust beneath the southeastern North China Craton: the Junan xenoliths and xenocrysts. Lithos, 2014, 206-207, 113-126.	0.6	16
63	Significance of ancient sulfide PGE and Re–Os signatures in the mantle beneath Calatrava, Central Spain. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	30
64	Carboniferous and Permian granites of the northern Tasman orogenic belt, Queensland, Australia: insights into petrogenesis and crustal evolution from an in situ zircon study. International Journal of Earth Sciences, 2013, 102, 647-669.	0.9	10
65	Microcontinents among the accretionary complexes of the Central Asia Orogenic Belt: In situ Re–Os evidence. Journal of Asian Earth Sciences, 2013, 62, 37-50.	1.0	16
66	Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks. Lithos, 2013, 175-176, 333-350.	0.6	46
67	Origin of volcanic ash beds across the Permian–Triassic boundary, Daxiakou, South China: Petrology and U–Pb age, trace elements and Hf-isotope composition of zircon. Chemical Geology, 2013, 360-361, 41-53.	1.4	59
68	Sulfides and chalcophile elements in Roberts Victor eclogites: Unravelling a sulfide-rich metasomatic event. Chemical Geology, 2013, 354, 73-92.	1.4	22
69	Transfer of Os isotopic signatures from peridotite to chromitite in the subcontinental mantle: Insights from in situ analysis of platinum-group and base-metal minerals (Ojén peridotite massif,) Tj ETQq1 1	0.784314	rgBI9/Overlo
70	The mid-Cretaceous transition from basement to cover within sedimentary rocks in eastern New Zealand: evidence from detrital zircon age patterns. Geological Magazine, 2013, 150, 455-478.	0.9	33
71	The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence. Geology, 2013, 41, 547-550.	2.0	34
72	In situ U–Pb Dating and Sr–Nd Isotopic Analysis of Perovskite: Constraints on the Age and Petrogenesis of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa. Journal of Petrology, 2012, 53, 2497-2522.	1.1	34

#	Article	IF	CITATIONS
7 3	Os-isotope variability within sulfides from podiform chromitites. Chemical Geology, 2012, 291, 224-235.	1.4	39
74	Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Research, 2012, 22, 1009-1029.	3.0	124
7 5	Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China. Precambrian Research, 2012, 216-219, 87-94.	1.2	12
76	Temporal correlation of magmatic-tectonic events in the lower and upper crust in north-east Australia. International Journal of Earth Sciences, 2012, 101, 1091-1109.	0.9	2
77	Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re–Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Research, 2012, 21, 194-206.	3.0	113
78	Detrital pyrope garnets from the El Kseibat area, Algeria: A glimpse into the lithospheric mantle beneath the north-eastern edge of the West African Craton. Journal of African Earth Sciences, 2012, 63, 1-11.	0.9	8
79	Lithospheric mantle evolution beneath northeast Australia. Lithos, 2011, 125, 405-422.	0.6	7
80	The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa. Contributions To Mineralogy and Petrology, 2011, 161, 351-371.	1.2	34
81	In situ Re–Os isotopic analysis of platinum-group minerals from the MayarÃ-Cristal ophiolitic massif (MayarÃ-Baracoa Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contributions To Mineralogy and Petrology, 2011, 161, 977-990.	1.2	51
82	Persistence of mantle lithospheric Re–Os signature during asthenospherization of the subcontinental lithospheric mantle: insights from in situ isotopic analysis of sulfides from the Ronda peridotite (Southern Spain). Contributions To Mineralogy and Petrology, 2010, 159, 315-330.	1.2	37
83	Zircon U-Pb and Hf isotopes of volcanic rocks from the Batamayineishan Formation in the eastern Junggar Basin. Science Bulletin, 2010, 55, 4150-4161.	1.7	33
84	Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde) Tj ETQq0 0 0 rgBT	Overlock	19 ₃ Tf 50 302
85	Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: Footprints of Proterozoic mantle plumes under the Cathaysia Block. Journal of Asian Earth Sciences, 2010, 37, 229-245.	1.0	14
86	Microinclusions in monocrystalline octahedral diamonds and coated diamonds from Diavik, Slave Craton: Clues to diamond genesis. Lithos, 2009, 112, 724-735.	0.6	31
87	Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir―problem?. Lithos, 2009, 112, 1043-1054.	0.6	100
88	Temporal and genetic relationships between the Kidston gold-bearing Breccia Pipe and the Lochaber Ring Dyke Complex, North Queensland, Australia: insights from in situ U–Pb and Hf-isotope analysis of zircon. Mineralogy and Petrology, 2009, 95, 17-45.	0.4	7
89	The Taihua group on the southern margin of the North China craton: further insights from U–Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology, 2009, 97, 43-59.	0.4	189
90	Recurrent mesoproterozoic continental magmatism in South-Central Norway. International Journal of Earth Sciences, 2009, 98, 1151-1171.	0.9	50

#	Article	IF	Citations
91	Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids. Journal of Petrology, 2009, 50, 1829-1855.	1.1	223
92	Sulfide and whole rock Re–Os systematics of eclogite and pyroxenite xenoliths from the Slave Craton, Canada. Earth and Planetary Science Letters, 2009, 283, 48-58.	1.8	56
93	Sulfides in mantle peridotites from Penghu Islands, Taiwan: Melt percolation, PGE fractionation, and the lithospheric evolution of the South China block. Geochimica Et Cosmochimica Acta, 2009, 73, 4531-4557.	1.6	52
94	Flood basalts and metallogeny: The lithospheric mantle connection. Earth-Science Reviews, 2008, 86, 145-174.	4.0	84
95	Re–Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos, 2008, 102, 43-64.	0.6	117
96	Magma sources and gold mineralisation in the Mount Leyshon and Tuckers Igneous Complexes, Queensland, Australia: U-Pb and Hf isotope evidence. Lithos, 2008, 101, 281-307.	0.6	21
97	Mesozoic decratonization of the North China block. Geology, 2008, 36, 467.	2.0	341
98	Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 2007, 261, 33-48.	1.8	132
99	Crustal evolution in the Georgetown Inlier, North Queensland, Australia: a detrital zircon grain study. Chemical Geology, 2007, 245, 198-218.	1.4	41
100	Mineral chemistry and zircon geochronology of xenocrysts and altered mantle and crustal xenoliths from the Aries micaceous kimberlite: Constraints on the composition and age of the central Kimberley Craton, Western Australia. Lithos, 2007, 93, 175-198.	0.6	23
101	Crustal zircons and mantle sulfides: Archean to Triassic events in the lithosphere beneath south-eastern Sicily. Lithos, 2007, 96, 503-523.	0.6	30
102	In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature, 2005, 436, 1005-1008.	13.7	190
103	Garnetite Xenoliths and Mantle–Water Interactions Below the Colorado Plateau, Southwestern United States. Journal of Petrology, 2005, 46, 1901-1924.	1.1	59
104	The Gurupi Belt, northern Brazil: Lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Research, 2005, 141, 83-105.	1.2	32
105	Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canadaâ ⁺ t. Lithos, 2004, 77, 39-55.	0.6	92
106	Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology, 2004, 208, 61-88.	1.4	143
107	The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 2004, 211, 47-69.	1.4	4,097
108	Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology, 2004, 32, 609.	2.0	48

#	Article	IF	CITATIONS
109	Proterozoic mantle lithosphere beneath the extended margin of the South China block: In situ Re-Os evidence. Geology, 2003, 31, 709.	2.0	45
110	Subduction signature for quenched carbonatites from the deep lithosphere. Geology, 2002, 30, 743.	2.0	61
111	In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results. Geochimica Et Cosmochimica Acta, 2002, 66, 1037-1050.	1.6	170
112	New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth and Planetary Science Letters, 2002, 203, 651-663.	1.8	212
113	Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos, 2001, 56, 267-301.	0.6	202
114	Are Lithospheres Forever? Tracking Changes in Subcontinental Lithospheric Mantle Through Time. GSA Today, 2001, 11, 4.	1.1	242
115	Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature, 2000, 407, 891-894.	13.7	428
116	Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 1998, 13, 477-482.	1.6	196
117	Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology, 1997, 141, 153-184.	1.4	307
118	Geochemistry and Origin of Sulphide Minerals in Mantle Xenoliths: Qilin, Southeastern China. , 0, .		12