Rita Sattler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11181385/publications.pdf Version: 2024-02-01

DITA SATTIED

#	Article	IF	CITATIONS
1	The M1311V variant of ATP7A is associated with impaired trafficking and copper homeostasis in models of motor neuron disease. Neurobiology of Disease, 2021, 149, 105228.	2.1	12
2	The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochemical Research, 2020, 45, 1306-1327.	1.6	22
3	Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Faculty Reviews, 2020, 9, 12.	1.7	17
4	Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin. Nature Neuroscience, 2019, 22, 741-752.	7.1	64
5	ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathologica, 2019, 138, 49-65.	3.9	48
6	Reactivation of nonsense-mediated mRNA decay protects against C9orf72 dipeptide-repeat neurotoxicity. Brain, 2019, 142, 1349-1364.	3.7	45
7	Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. ELife, 2019, 8, .	2.8	76
8	Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Research, 2018, 1693, 98-108.	1.1	65
9	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	7.1	404
10	Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathologica, 2018, 135, 227-247.	3.9	116
11	Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Frontiers in Neuroscience, 2018, 12, 56.	1.4	29
12	RNA Editing Deficiency in Neurodegeneration. Advances in Neurobiology, 2018, 20, 63-83.	1.3	13
13	Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS. Cell Reports, 2017, 21, 110-125.	2.9	83
14	The transcription factor Pax6 contributes to the induction of GLTâ€1 expression in astrocytes through an interaction with a distal enhancer element. Journal of Neurochemistry, 2016, 136, 262-275.	2.1	28
15	Generation of <scp>GFAP::GFP</scp> astrocyte reporter lines from human adult fibroblastâ€derived i <scp>PS</scp> cells using zincâ€finger nuclease technology. Glia, 2016, 64, 63-75.	2.5	26
16	A Comprehensive Library of Familial Human Amyotrophic Lateral Sclerosis Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0118266.	1.1	45
17	High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells. PLoS ONE, 2015, 10, e0127785.	1.1	14
18	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	13.7	835

RITA SATTLER

#	Article	IF	CITATIONS
19	Biomarker development for C9orf72 repeat expansion in ALS. Brain Research, 2015, 1607, 26-35.	1.1	25
20	Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets?. Neurodegenerative Disease Management, 2014, 4, 417-437.	1.2	13
21	C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507, 195-200.	13.7	779
22	Glial Glutamate and Metabolic Transporters as a Target for Neurodegenerative Therapy and Biomarkers. , 2014, , 61-88.		0
23	Human Stem Cell-Derived Spinal Cord Astrocytes with Defined Mature or Reactive Phenotypes. Cell Reports, 2013, 4, 1035-1048.	2.9	175
24	RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron, 2013, 80, 415-428.	3.8	785
25	Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. Journal of Neurosurgery, 2013, 119, 878-886.	0.9	24
26	Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology, 2011, 60, 1168-1175.	2.0	87
27	Human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Experimental Neurology, 2011, 232, 203-211. Inhibition of complimath ymbasmml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	2.0	21
0.0	overflow="scroll"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:m /><mml:none< td=""><td>row><mml< td=""><td>:mtext>c</td></mml<></td></mml:none<></mml:m </mml:mmultiscripts></mml:mrow>	row> <mml< td=""><td>:mtext>c</td></mml<>	:mtext>c
28	/> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> transporter-mediated cystine uptake by sulfasalazine analogs. Bioorganic and Medicinal Chemistry	1.0	34
29	CluR1 Controls Dendrite Growth through Its Binding Partner, SAP97. Journal of Neuroscience, 2008, 28, 10220-10233.	1.7	60
30	Targeting an Old Mechanism in a New Disease—Protection of Glutamatergic Dysfunction in Depression. Biological Psychiatry, 2007, 61, 137-138.	0.7	20
31	Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1. Nature Neuroscience, 2005, 8, 985-987.	7.1	93
32	The Influence of Glutamate Receptor 2 Expression on Excitotoxicity in GluR2 Null Mutant Mice. Journal of Neuroscience, 2001, 21, 2224-2239.	1.7	53
33	Molecular Mechanisms of Glutamate Receptor-Mediated Excitotoxic Neuronal Cell Death. Molecular Neurobiology, 2001, 24, 107-130.	1.9	474
34	Distinct Roles of Synaptic and Extrasynaptic NMDA Receptors in Excitotoxicity. Journal of Neuroscience, 2000, 20, 22-33.	1.7	227
35	Molecular mechanisms of calcium-dependent excitotoxicity. Journal of Molecular Medicine, 2000, 78, 3-13.	1.7	406
36	Characterization of Neuroprotection from Excitotoxicity by Moderate and Profound Hypothermia in Cultured Cortical Neurons Unmasks a Temperature-Insensitive Component of Clutamate Neurotoxicity. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 848-867.	2.4	31

#	Article	IF	CITATIONS
37	Distinct Influx Pathways, Not Calcium Load, Determine Neuronal Vulnerability to Calcium Neurotoxicity. Journal of Neurochemistry, 1998, 71, 2349-2364.	2.1	234
38	Determination of the Time Course and Extent of Neurotoxicity at Defined Temperatures in Cultured Neurons Using a Modified Multiwell Plate Fluorescence Scanner. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 455-463.	2.4	38