
Sandeep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11180948/publications.pdf Version: 2024-02-01

SANDEED

#	Article	IF	CITATIONS
1	Assessment of Site Amplification Using Borehole and Surface Data: Variability of Site Effect Estimation from Different Phases of the Accelerogram. Lecture Notes in Civil Engineering, 2022, , 317-331.	0.3	0
2	Strong Motion Modelling of the 1999 Izmit Earthquake Using Site Effect in a Semi-Empirical Technique: A More Realistic Approach. Pure and Applied Geophysics, 2022, 179, 483-497.	0.8	5
3	Modelling of 2016 Kumamoto earthquake by integrating site effect in semi-empirical technique. Natural Hazards, 2022, 111, 1931.	1.6	0
4	Earthquake Genesis and Earthquake Early Warning Systems: Challenges and a Way Forward. Surveys in Geophysics, 2022, 43, 1143-1168.	2.1	13
5	Emerging techniques to simulate strong ground motion. , 2021, , 33-46.		2
6	A review on geophysical parameters comparison in Garhwal and Kumaun Himalaya region, India. , 2021, , 95-103.		1
7	Strong-Motion Simulation of the 1988 Indo-Burma and Scenario Earthquakes in NE India by Integrating Site Effects in a Semi-Empirical Technique. Pure and Applied Geophysics, 2021, 178, 2839-2854.	0.8	5
8	Characterization of shear wave attenuation and site effects in the Garhwal Himalaya, India from inversion of strong motion records. Journal of Earth System Science, 2021, 130, 1.	0.6	2
9	Spatial variability studies of attenuation characteristics of Qα and Qβ in Kumaon and Garhwal region of NW Himalaya. Natural Hazards, 2020, 103, 1219-1237.	1.6	11
10	Strong motion generation area modelling of the 2008 Iwate earthquake, Japan using modified semi-empirical technique. Journal of Earth System Science, 2019, 128, 1.	0.6	4
11	Modeling of 2011 IndoNepal Earthquake and Scenario Earthquakes in the Kumaon Region and Comparative Attenuation Study Using PGA Distribution with the Garhwal Region. Pure and Applied Geophysics, 2019, 176, 4687-4700.	0.8	11
12	Modelling of strong motion generation areas for a great earthquake in central seismic gap region of Himalayas using the modified semi-empirical approach. Journal of Earth System Science, 2019, 128, 1.	0.6	11
13	Near-surface Shear Velocity Structure Estimation using Ground-roll in Moran Area, Central Upper Assam Basin, India. Journal of the Geological Society of India, 2019, 93, 51-55.	0.5	Ο
14	Determination of site effect and anelastic attenuation at Kathmandu, Nepal Himalaya region and its use in estimation of source parameters of 25 April 2015 Nepal earthquake MwÂ=Â7.8 and its aftershocks including the 12 May 2015 MwÂ=Â7.3 event. Natural Hazards, 2018, 91, 1003-1023.	1.6	7
15	Modeling of the strong ground motion of 25th April 2015 Nepal earthquake using modified semi-empirical technique. Acta Geophysica, 2018, 66, 461-477.	1.0	3
16	Source Parameters and High Frequency Characteristics of Local Events (0.5Ââ‰ÂM LÂâ‰Â2.9) Around Bilaspur Region of the Himachal Himalaya. Pure and Applied Geophysics, 2017, 174, 1643-1658.	0.8	8
17	Simulation of Strong Ground Motion of the 2009 Bhutan Earthquake Using Modified Semi-Empirical Technique. Pure and Applied Geophysics, 2017, 174, 4343-4356.	0.8	10
18	Source model estimation of the 2005 Kyushu Earthquake, Japan using Modified Semi Empirical Technique. Journal of Asian Earth Sciences, 2017, 147, 240-253.	1.0	8

Sandeep

#	Article	IF	CITATIONS
19	Emergence of the semi-empirical technique of strong ground motion simulation: A review. Journal of the Geological Society of India, 2017, 89, 719-722.	0.5	9
20	Estimation of the source parameters of the Nepal earthquake from strong motion data. Natural Hazards, 2016, 83, 867-883.	1.6	7
21	Simulation of the records of the 27 March 2013 Nantou Taiwan earthquake using modified semi-empirical approach. Natural Hazards, 2015, 78, 995-1020.	1.6	12
22	Three-Dimensional Attenuation Structure of the Kumaon Himalayas, India, Based on Inversion of Strong Motion Data. Pure and Applied Geophysics, 2015, 172, 333-358.	0.8	8
23	Modeling of strong motion generation areas of the Niigata, Japan, earthquake of 2007 using modified semi-empirical technique. Natural Hazards, 2015, 77, 933-957.	1.6	15
24	Detailed Attenuation Study of Shear Waves in the Kumaon Himalaya, India, Using the Inversion of Strongâ€Motion Data. Bulletin of the Seismological Society of America, 2015, 105, 1836-1851.	1.1	23
25	Coda wave attenuation characteristics for Kumaon and Garhwal Himalaya, India. Natural Hazards, 2015, 75, 1057-1074.	1.6	12
26	Modeling of strong motion generation areas of the 2011 Tohoku, Japan earthquake using modified semi-empirical technique. Natural Hazards, 2014, 71, 587-609.	1.6	29
27	Effect of frequency-dependent radiation pattern in the strong motion simulation of the 2011 Tohoku earthquake, Japan, using modified semi-empirical method. Natural Hazards, 2014, 73, 1499-1521.	1.6	19
28	Modeling of strong motion generation area of the Uttarkashi earthquake using modified semiempirical approach. Natural Hazards, 2014, 73, 2041-2066.	1.6	20
29	Implications of Site Effects and Attenuation Properties for Estimation of Earthquake Source Characteristics in Kinnaur Himalaya, India. Pure and Applied Geophysics, 0, , 1.	0.8	1