
Sarah Dorner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11180897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Research, 2012, 46, 1511-1523.	11.3	188
2	Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area. Chemosphere, 2012, 86, 118-123.	8.2	115
3	Temporal variability of combined sewer overflow contaminants: Evaluation of wastewater micropollutants as tracers of fecal contamination. Water Research, 2013, 47, 4370-4382.	11.3	109
4	Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Research, 2013, 47, 2689-2700.	11.3	85
5	Fate and Transport Modeling of Potential Pathogens: The Contribution From Sediments ¹ . Journal of the American Water Resources Association, 2009, 45, 35-44.	2.4	76
6	Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment, 2014, 499, 238-247.	8.0	71
7	Multi-objective modelling and decision support using a Bayesian network approximation to a non-point source pollution model. Environmental Modelling and Software, 2007, 22, 211-222.	4.5	67
8	Can <i>E. coli</i> or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters?. Critical Reviews in Microbiology, 2016, 42, 1-10.	6.1	60
9	Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases. Science of the Total Environment, 2018, 635, 144-155.	8.0	56
10	The effects of combined sewer overflow events on riverine sources of drinking water. Water Research, 2016, 92, 218-227.	11.3	49
11	Fate of toxic cyanobacterial genera from natural bloom events during ozonation. Water Research, 2015, 73, 204-215.	11.3	45
12	Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: Application to drinking water production. Water Research, 2014, 56, 98-108.	11.3	41
13	Cumulative effects of fecal contamination from combined sewer overflows: Management for source water protection. Journal of Environmental Management, 2016, 174, 62-70.	7.8	39
14	Autonomous online measurement of β-D-glucuronidase activity in surface water: is it suitable for rapid E.Âcoli monitoring?. Water Research, 2019, 152, 241-250.	11.3	35
15	Adsorption characteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment. Toxicon, 2015, 103, 48-54.	1.6	33
16	Cyanotoxin degradation activity and mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. Environmental Sciences: Processes and Impacts, 2016, 18, 1417-1426.	3.5	32
17	Source tracking of leaky sewers: A novel approach combining fecal indicators in water and sediments. Water Research, 2014, 58, 50-61.	11.3	31
18	Temporal variability of parasites, bacterial indicators, and wastewater micropollutants in a water resource recovery facility under various weather conditions. Water Research, 2019, 148, 446-458.	11.3	31

SARAH DORNER

#	Article	IF	CITATIONS
19	Modelling total suspended solids, E. coli and carbamazepine, a tracer of wastewater contamination from combined sewer overflows. Journal of Hydrology, 2015, 531, 830-839.	5.4	30
20	Breakthrough of cyanobacteria in bank filtration. Water Research, 2016, 102, 170-179.	11.3	30
21	Impacts of global change on the concentrations and dilution of combined sewer overflows in a drinking water source. Science of the Total Environment, 2015, 508, 462-476.	8.0	29
22	Cyanobacterial detection using in vivo fluorescence probes: Managing interferences for improved decisionâ€making. Journal - American Water Works Association, 2012, 104, E466.	0.3	28
23	Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes. Water Research, 2014, 55, 150-161.	11.3	24
24	A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes. Water Research, 2017, 127, 191-203.	11.3	23
25	Modelling the impacts of global change on concentrations of Escherichia coli in an urban river. Advances in Water Resources, 2017, 108, 450-460.	3.8	22
26	Diversity Assessment of Toxic Cyanobacterial Blooms during Oxidation. Toxins, 2020, 12, 728.	3.4	22
27	Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin. Ecotoxicology and Environmental Safety, 2015, 120, 409-417.	6.0	21
28	Can routine monitoring of E.Âcoli fully account for peak event concentrations at drinking water intakes in agricultural and urban rivers?. Water Research, 2020, 170, 115369.	11.3	21
29	Lowâ€risk cyanobacterial bloom sources: Cell accumulation within fullâ€scale treatment plants. Journal - American Water Works Association, 2013, 105, E651.	0.3	20
30	Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants. Environmental Sciences: Processes and Impacts, 2014, 16, 313.	3.5	20
31	Tracking the contribution of multiple raw and treated wastewater discharges at an urban drinking water supply using near real-time monitoring of β-d-glucuronidase activity. Water Research, 2019, 164, 114869.	11.3	19
32	Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant?. Toxins, 2021, 13, 25.	3.4	18
33	Assessing microbial risk through event-based pathogen loading and hydrodynamic modelling. Science of the Total Environment, 2019, 693, 133567.	8.0	15
34	Fecal contamination of storm sewers: Evaluating wastewater micropollutants, human-specific Bacteroides 16S rRNA, and mitochondrial DNA genetic markers as alternative indicators of sewer cross connections. Science of the Total Environment, 2019, 659, 548-560.	8.0	15
35	Near real-time notification of water quality impairments in recreational freshwaters using rapid online detection of β-D-glucuronidase activity as a surrogate for Escherichia coli monitoring. Science of the Total Environment, 2020, 720, 137303.	8.0	14
36	Microbial risk associated with CSOs upstream of drinking water sources in a transboundary river using hydrodynamic and water quality modeling. Science of the Total Environment, 2019, 683, 547-558.	8.0	13

SARAH DORNER

#	Article	IF	CITATIONS
37	Demonstrating the reduction of enteric viruses by drinking water treatment during snowmelt episodes in urban areas. Water Research X, 2021, 11, 100091.	6.1	13
38	Locating illicit discharges in storm sewers in urban areas using multi-parameter source tracking: Field validation of a toolbox composite index to prioritize high risk areas. Science of the Total Environment, 2022, 811, 152060.	8.0	11
39	Using Advanced Spectroscopy and Organic Matter Characterization to Evaluate the Impact of Oxidation on Cyanobacteria. Toxins, 2019, 11, 278.	3.4	10
40	Integrating parametric uncertainty and modeling results into an advisory system for watershed management. Journal of Environmental Management, 2001, 5, 445-451.	1.7	9
41	Performance of vacuum UV (VUV) for the degradation of MC-LR, geosmin, and MIB from cyanobacteria-impacted waters. Environmental Science: Water Research and Technology, 2019, 5, 2048-2058.	2.4	8
42	Normalized dynamic behavior of combined sewer overflow discharges for source water characterization and management. Journal of Environmental Management, 2019, 249, 109386.	7.8	7
43	Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins, 2022, 14, 410.	3.4	7
44	Automated Targeted Sampling of Waterborne Pathogens and Microbial Source Tracking Markers Using Near-Real Time Monitoring of Microbiological Water Quality. Water (Switzerland), 2021, 13, 2069.	2.7	6
45	Using surrogate data to assess risks associated with microbial peak events in source water at drinking water treatment plants. Water Research, 2021, 200, 117296.	11.3	6
46	Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation. Chemical Engineering Journal Advances, 2021, 8, 100151.	5.2	5
47	Impact of Hydrometeorological Events for the Selection of Parametric Models for Protozoan Pathogens in Drinkingâ€Water Sources. Risk Analysis, 2021, 41, 1413-1426.	2.7	4
48	The Effects of Ferric Sulfate (Fe2(SO4)3) on the Removal of Cyanobacteria and Cyanotoxins: A Mesocosm Experiment. Toxins, 2021, 13, 753.	3.4	4
49	Occurrence and partitioning behavior of E. coli and wastewater micropollutants following rainfall events. Resources, Environment and Sustainability, 2022, 9, 100067.	5.9	4
50	Impact of vacuum UV on natural and algal organic matter from cyanobacterial impacted waters. Environmental Science: Water Research and Technology, 2020, 6, 829-838.	2.4	3
51	Changes in Escherichia coli to enteric protozoa ratios in rivers: Implications for risk-based assessment of drinking water treatment requirements. Water Research, 2021, 205, 117707.	11.3	3
52	Oxidation to Control Cyanobacteria and Cyanotoxins in Drinking Water Treatment Plants: Challenges at the Laboratory and Full-Scale Plants. Water (Switzerland), 2022, 14, 537.	2.7	3
53	Precipitation effects on parasite, indicator bacteria, and wastewater micropollutant loads from a water resource recovery facility influent and effluent. Journal of Water and Health, 2019, 17, 701-716.	2.6	2
54	Importance of Distributional Forms for the Assessment of Protozoan Pathogens Concentrations in Drinkingâ€Water Sources. Risk Analysis, 2021, 41, 1396-1412.	2.7	2

#	Article	IF	CITATIONS
55	A hydrocarbon pipeline spill risk assessment framework for drinking water supply. AWWA Water Science, 2020, 2, e1181.	2.1	Ο