
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11180741/publications.pdf Version: 2024-02-01

KADI H DIATE

#	Article	IF	CITATIONS
1	Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 1992, 359, 845-848.	13.7	2,168
2	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	13.7	1,872
3	Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Medicine, 2001, 7, 575-583.	15.2	1,484
4	Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 1994, 367, 576-579.	13.7	1,188
5	Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics, 2001, 28, 131-138.	9.4	967
6	Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathologica, 2018, 135, 311-336.	3.9	543
7	Cell Type-Specific Expression of Angiopoietin-1 and Angiopoietin-2 Suggests a Role in Glioblastoma Angiogenesis. American Journal of Pathology, 1998, 153, 1459-1466.	1.9	433
8	Vascular endothelial growth factor and glioma angiogenesis: Coordinate induction of VEGF receptors, distribution of VEGF protein and possibleIn vivo regulatory mechanisms. International Journal of Cancer, 1994, 59, 520-529.	2.3	429
9	Up-regulation of hypoxia-inducible factors HIF-11± and HIF-21± under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene, 2000, 19, 5435-5443.	2.6	348
10	Angiogenesis after cerebral ischemia. Acta Neuropathologica, 2009, 117, 481-496.	3.9	333
11	Direct Stimulation of Adult Neural Stem Cells In Vitro and Neurogenesis In Vivo by Vascular Endothelial Growth Factor. Brain Pathology, 2004, 14, 237-248.	2.1	319
12	Angiogenesis in malignant gliomas. Glia, 1995, 15, 339-347.	2.5	315
13	Mechanisms of Angiogenesis in the Brain. Journal of Neuropathology and Experimental Neurology, 1999, 58, 313-320.	0.9	314
14	Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation. PLoS Biology, 2014, 12, e1001874.	2.6	312
15	Angiopoietin-2 Regulates Gene Expression in TIE2-Expressing Monocytes and Augments Their Inherent Proangiogenic Functions. Cancer Research, 2010, 70, 5270-5280.	0.4	299
16	Uncontrolled Expression of Vascular Endothelial Growth Factor and Its Receptors Leads to Insufficient Skin Angiogenesis in Patients With Systemic Sclerosis. Circulation Research, 2004, 95, 109-116.	2.0	276
17	Increased Generation of Neuronal Progenitors after Ischemic Injury in the Aged Adult Human Forebrain. Journal of Neuroscience, 2006, 26, 13114-13119.	1.7	252
18	Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncolmmunology, 2015, 4, e1008371.	2.1	227

#	Article	IF	CITATIONS
19	Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathologica, 2012, 124, 763-775.	3.9	226
20	Cell Type Specific Upregulation of Vascular Endothelial Growth Factor in an MCA-occlusion Model of Cerebral Infarct. Journal of Neuropathology and Experimental Neurology, 1999, 58, 654-666.	0.9	221
21	Molecular Mechanisms of Developmental and Tumor Angiogenesis. Brain Pathology, 1994, 4, 207-218.	2.1	217
22	Expression of Angiopoietin-1, Angiopoietin-2, and Tie Receptors after Middle Cerebral Artery Occlusion in the Rat. American Journal of Pathology, 2000, 157, 1473-1483.	1.9	197
23	Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 2017, 136, 65-79.	1.6	196
24	Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion. Journal of Immunology, 2011, 186, 4183-4190.	0.4	185
25	Angiopoietinâ€2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Annals of the New York Academy of Sciences, 2015, 1347, 45-51.	1.8	180
26	Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell, 2005, 8, 131-141.	7.7	174
27	Flt-1 Signaling in Macrophages Promotes Glioma Growth <i>In vivo</i> . Cancer Research, 2008, 68, 7342-7351.	0.4	144
28	Endothelial cellâ€derived angiopoietinâ€2 is a therapeutic target in treatmentâ€naive and bevacizumabâ€resistant glioblastoma. EMBO Molecular Medicine, 2016, 8, 39-57.	3.3	140
29	Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nature Cell Biology, 2009, 11, 873-880.	4.6	132
30	Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. Journal of Experimental Medicine, 2012, 209, 1611-1627.	4.2	127
31	Coexpression of Erythropoietin and Vascular Endothelial Growth Factor in Nervous System Tumors Associated With von Hippel-Lindau Tumor Suppressor Gene Loss of Function. Blood, 1998, 92, 3388-3393.	0.6	124
32	Angiopoietin-2-induced blood–brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathologica, 2016, 131, 753-773.	3.9	120
33	Differentiation of the brain vasculature: the answer came blowing by the Wnt. Journal of Angiogenesis Research, 2010, 2, 1.	2.9	117
34	Angiopoietin-1 Promotes Tumor Angiogenesis in a Rat Glioma Model. American Journal of Pathology, 2004, 165, 1557-1570.	1.9	115
35	Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mechanisms of Development, 2001, 108, 45-57.	1.7	110
36	Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget, 2015, 6, 40836-40849.	0.8	106

#	Article	IF	CITATIONS
37	Up-Regulation of Vascular Endothelial Growth Factor in Stromal Cells of Hemangioblastomas Is Correlated with Up-Regulation of the Transcription Factor HRF/HIF-2α. American Journal of Pathology, 1998, 153, 25-29.	1.9	105
38	Vascular Endothelial Growth Factor Expression, Vascular Volume, and Capillary Permeability in Human Brain Tumors. Neurosurgery, 1999, 44, 732-740.	0.6	105
39	Prolyl Hydroxylases 2 and 3 Act in Gliomas as Protective Negative Feedback Regulators of Hypoxia-Inducible Factors. Cancer Research, 2010, 70, 357-366.	0.4	104
40	Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathologica, 2007, 113, 607-626.	3.9	103
41	Mutations in the VHL tumor suppressor gene and associated lesions in families with von Hippel-Lindau disease from central Europe. Human Genetics, 1996, 98, 271-280.	1.8	102
42	VEGFR-1 Regulates Adult Olfactory Bulb Neurogenesis and Migration of Neural Progenitors in the Rostral Migratory Stream In Vivo. Journal of Neuroscience, 2009, 29, 8704-8714.	1.7	101
43	Minor Contribution of Bone Marrowâ€Derived Endothelial Progenitors to the Vascularization of Murine Gliomas. Brain Pathology, 2003, 13, 582-597.	2.1	97
44	Cell Type-Specific Expression of Neuropilins in an MCA-Occlusion Model in Mice Suggests a Potential Role in Post-Ischemic Brain Remodeling. Journal of Neuropathology and Experimental Neurology, 2002, 61, 339-350.	0.9	95
45	The Role of Angiopoietins During Angiogenesis in Gliomas. Brain Pathology, 2005, 15, 311-317.	2.1	94
46	Angiopoietin-2 Impairs Revascularization After Limb Ischemia. Circulation Research, 2007, 101, 88-96.	2.0	93
47	<scp>MIF</scp> Receptor <scp>CD</scp> 74 is Restricted to Microglia/Macrophages, Associated with a <scp>M</scp> 1â€Polarized Immune Milieu and Prolonged Patient Survival in Gliomas. Brain Pathology, 2015, 25, 491-504.	2.1	90
48	Participation of Bone Marrow-Derived Cells in Long-Term Repair Processes after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 709-717.	2.4	81
49	Angiopoietin-2 promotes myeloid cell infiltration in a β2-integrin–dependent manner. Blood, 2011, 118, 5050-5059.	0.6	81
50	A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. Journal of Molecular Medicine, 2002, 80, 562-575.	1.7	80
51	Antiangiogenic Gene Therapy in a Rat Glioma Model Using a Dominant-Negative Vascular Endothelial Growth Factor Receptor 2. Human Gene Therapy, 1999, 10, 1117-1128.	1.4	78
52	Differential inhibition of tumor angiogenesis by tie2 and vascular endothelial growth factor receptorâ€2 dominantâ€negative receptor mutants. International Journal of Cancer, 2001, 91, 273-282.	2.3	78
53	Tumor Vessel Normalization, Immunostimulatory Reprogramming, and Improved Survival in Glioblastoma with Combined Inhibition of PD-1, Angiopoietin-2, and VEGF. Cancer Immunology Research, 2019, 7, 1910-1927.	1.6	74
54	Expression and localization of placenta growth factor and PIGF receptors in human meningiomas. , 1999, 189, 66-71.		73

#	Article	IF	CITATIONS
55	Neuropathological findings in 224 patients with temporal lobe epilepsy. Acta Neuropathologica, 1993, 86, 433-8.	3.9	68
56	Putative Control of Angiogenesis in Hemangioblastomas by the von Hippel-Lindau Tumor Suppressor Gene. Journal of Neuropathology and Experimental Neurology, 1997, 56, 1242-1252.	0.9	67
57	Classification of meningiomas—advances and controversies. Chinese Clinical Oncology, 2017, 6, S2-S2.	0.4	66
58	EGFL7 ligates $\hat{I}\pm v\hat{I}^2$ 3 integrin to enhance vessel formation. Blood, 2013, 121, 3041-3050.	0.6	62
59	Vascular endothelial growth factor. , 1997, 35, 363-370.		60
60	Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. International Journal of Cancer, 2009, 125, 1771-1777.	2.3	58
61	Brain invasion in otherwise benign meningiomas does not predict tumor recurrence. Acta Neuropathologica, 2016, 132, 479-481.	3.9	54
62	β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Molecular Cancer, 2015, 14, 17.	7.9	51
63	Hypoxia and Hypoxia Inducible Factors (HIF) as Important Regulators of Tumor Physiology. Cancer Treatment and Research, 2004, 117, 219-248.	0.2	50
64	Role of hypoxia in tumor angiogenesis?molecular and cellular angiogenic crosstalk. Cell and Tissue Research, 2003, 314, 145-155.	1.5	49
65	Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants. International Journal of Cancer, 2004, 111, 348-357.	2.3	48
66	Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietinâ€⊋. Journal of Pathology, 2009, 217, 571-580.	2.1	44
67	Brain homeostasis: VEGF receptor 1 and 2—two unequal brothers in mind. Cellular and Molecular Life Sciences, 2013, 70, 1705-1725.	2.4	44
68	Papillary glioneuronal tumor (PGNT) exhibits a characteristic methylation profile and fusions involving PRKCA. Acta Neuropathologica, 2019, 137, 837-846.	3.9	43
69	Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nature Cancer, 2021, 2, 1086-1101.	5.7	39
70	Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms. Journal of Neuroscience Research, 1999, 55, 486-495.	1.3	38
71	Decrease of VEGF-A in myeloid cells attenuates glioma progression and prolongs survival in an experimental glioma model. Neuro-Oncology, 2016, 18, 939-949.	0.6	38
72	β-Catenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. Journal of Neuroscience, 2016, 36, 8921-8935.	1.7	37

#	Article	IF	CITATIONS
73	Sonic Hedgehog Acts as a Negative Regulator of β-Catenin Signaling in the Adult Tongue Epithelium. American Journal of Pathology, 2010, 177, 404-414.	1.9	36
74	Differential expression of vascular endothelial growth factor A, its receptors VEGFR-1, -2, and -3 and co-receptors neuropilin-1 and -2 does not predict bevacizumab response in human astrocytomas. Neuro-Oncology, 2016, 18, 173-183.	0.6	35
75	Vascular Endothelial Growth Factor-driven Glioma Growth and Vascularization in an Orthotopic Rat Model Monitored by Magnetic Resonance Imaging. Neurosurgery, 2000, 47, 921-930.	0.6	34
76	Controversial roles for dexamethasone in glioblastoma – Opportunities for novel vascular targeting therapies. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1460-1468.	2.4	33
77	Upregulation of vascular endothelial growth factor in severe chronic brain hypoxia of the rat. Neuroscience Letters, 1998, 252, 199-202.	1.0	28
78	Netrin-1 Expression Is an Independent Prognostic Factor for Poor Patient Survival in Brain Metastases. PLoS ONE, 2014, 9, e92311.	1.1	28
79	Cerebral Angiogenesis During Development: Who Is Conducting the Orchestra?. Methods in Molecular Biology, 2014, 1135, 3-20.	0.4	28
80	Gene therapy of malignant glioma via inhibition of tumor angiogenesis. Cancer and Metastasis Reviews, 1996, 15, 237-240.	2.7	26
81	The immune suppressive microenvironment affects efficacy of radioâ€immunotherapy in brain metastasis. EMBO Molecular Medicine, 2021, 13, e13412.	3.3	26
82	DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma. , 2021, 9, e002226.		26
83	HIF-1α is involved in blood–brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathologica, 2020, 140, 183-208.	3.9	24
84	Anti-Angiogenic Gene Therapy of Malignant Glioma. , 1997, 68, 105-110.		23
85	VEGFR-1 Signaling Regulates the Homing of Bone Marrow-Derived Cells in a Mouse Stroke Model. Journal of Neuropathology and Experimental Neurology, 2010, 69, 168-175.	0.9	22
86	Lack of H3K27 trimethylation is associated with 1p/19q codeletion in diffuse gliomas. Acta Neuropathologica, 2019, 138, 331-334.	3.9	22
87	Angiopoietin-1 mediates inhibition of hypertension-induced release of angiopoietin-2 from endothelial cells. Cardiovascular Research, 2012, 94, 510-518.	1.8	21
88	Generation of Neuronal Progenitor Cells in Response to Tumors in the Human Brain. Stem Cells, 2014, 32, 244-257.	1.4	12
89	The Angiopoietin—Tie System: Common Signaling Pathways for Angiogenesis, Cancer, and Inflammation. , 2015, , 313-328.		12
90	ATP Synthase Deficiency due to TMEM70 Mutation Leads to Ultrastructural Mitochondrial Degeneration and Is Amenable to Treatment. BioMed Research International, 2015, 2015, 1-10.	0.9	10

#	Article	IF	CITATIONS
91	Control of Tumor Growth Via Inhibition of Tumor Angiogenesis. Advances in Experimental Medicine and Biology, 1998, 451, 57-61.	0.8	9
92	Coexpression of Erythropoietin and Vascular Endothelial Growth Factor in Nervous System Tumors Associated With von Hippel-Lindau Tumor Suppressor Gene Loss of Function. Blood, 1998, 92, 3388-3393.	0.6	9
93	Influence of VEGF-A, VEGFR-1-3, and neuropilin 1-2 on progression-free: and overall survival in WHO grade II and III meningioma patients. Journal of Molecular Histology, 2021, 52, 233-243.	1.0	8
94	Bone Marrow Chimera Experiments to Determine the Contribution of Hematopoietic Stem Cells to Cerebral Angiogenesis. Methods in Molecular Biology, 2014, 1135, 275-288.	0.4	6
95	Linking epigenetic signature and metabolic phenotype in <i>IDH</i> mutant and <i>IDH</i> wildtype diffuse glioma. Neuropathology and Applied Neurobiology, 2021, 47, 379-393.	1.8	4
96	Brain Tumor Stem Cells. Recent Results in Cancer Research, 2009, 171, 241-259.	1.8	3
97	Analysis of Angiogenesis in the Developing Mouse Central Nervous System. Methods in Molecular Biology, 2014, 1135, 55-68.	0.4	2
98	Analysis of Cerebral Angiogenesis in Human Glioblastomas. Methods in Molecular Biology, 2014, 1135, 187-203.	0.4	1
99	OTME-6. Deep sequencing reveals heterogeneity of brain metastasis-associated macrophages and microglia and uncovers their cell type-specific functions within the tumor microenvironment. Neuro-Oncology Advances, 2021, 3, ii14-ii14.	0.4	1
100	Mechanisms of Angiogenesis in Brain Tumors and their Translation into Therapeutic Anti-tumor Strategies. , 2006, , 219-235.		0
101	Hypoxia and Angiogenesis in Glioblastomas. , 2008, , 195-214.		0
102	Conditional expression of Angâ€2 during tumor angiogenesis: tightly balanced Angiopoietin/Tie2 signaling determines the tumor vascular phenotype. FASEB Journal, 2008, 22, 604-604.	0.2	0
103	The Role of Vascular Endothelial Growth Factor in Tumor Angiogenesis. , 1998, , 305-318.		0