
Junfu Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11179512/publications.pdf Version: 2024-02-01

LUNEU L

#	Article	IF	CITATIONS
1	The in-vitro digestion behaviors of micellar casein acting as wall materials in spray-dried microparticles: The relationships between colloidal calcium phosphate and the release of loaded blueberry anthocyanins. Food Chemistry, 2022, 375, 131864.	8.2	10
2	A novel method combining stable isotopic labeling and high-resolution mass spectrometry to trace the quinone reaction products in wines. Food Chemistry, 2022, 383, 132448.	8.2	4
3	Glycated α-lactalbumin based micelles for quercetin delivery: Physicochemical stability and fate of simulated digestion. Food Chemistry: X, 2022, 13, 100257.	4.3	4
4	Controlled gastrointestinal digestion of micellar casein loaded anthocyanins: The chelating and complexing effect of dextran sulfate. Food Hydrocolloids, 2022, 132, 107863.	10.7	8
5	Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARÎ ³ signaling activation. Microbiome, 2021, 9, 83.	11.1	101
6	The in-vitro digestion behaviors of milk proteins acting as wall materials in spray-dried microparticles: Effects on the release of loaded blueberry anthocyanins. Food Hydrocolloids, 2021, 115, 106620.	10.7	34
7	Enhanced rehydration behaviors of micellar casein powder: The effects of high hydrostatic pressure treatments on micelle structures. Food Research International, 2021, 150, 110797.	6.2	7
8	Guidelines for absolute quantitative realâ€ŧime PCR for microbial determination in <i>in vitro</i> gastrointestinal digestion. Food Frontiers, 2020, 1, 200-204.	7.4	15
9	Effect of Dextrose Equivalent on Maltodextrin/Whey Protein Spray-Dried Powder Microcapsules and Dynamic Release of Loaded Flavor during Storage and Powder Rehydration. Foods, 2020, 9, 1878.	4.3	28
10	Yeasts Induce Acetaldehyde Production in Wine Micro-oxygenation Treatments. Journal of Agricultural and Food Chemistry, 2020, 68, 15216-15227.	5.2	12
11	Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chemistry, 2020, 320, 126648.	8.2	36
12	The modulation of Luffa cylindrica (L.) Roem supplementation on gene expression and amino acid profiles in liver for alleviating hepatic steatosis via gut microbiota in high-fat diet-fed mice: insight from hepatic transcriptome analysis. Journal of Nutritional Biochemistry, 2020, 80, 108365.	4.2	12
13	Changes of metabolites of acrylamide and glycidamide in acrylamide-exposed rats pretreated with blueberry anthocyanins extract. Food Chemistry, 2019, 274, 611-619.	8.2	29
14	Gut microbiota determines the prevention effects of <i>Luffa cylindrica</i> (L.) Roem supplementation against obesity and associated metabolic disorders induced by highâ€fat diet. FASEB Journal, 2019, 33, 10339-10352.	0.5	47
15	Enhanced wetting behaviours of whey protein isolate powder: The different effects of lecithin addition by fluidised bed agglomeration and coating processes. Food Hydrocolloids, 2017, 71, 94-101.	10.7	42
16	The effects of fluidised bed and high shear mixer granulation processes on water adsorption and flow properties of milk protein isolate powder. Journal of Food Engineering, 2017, 192, 19-27.	5.2	24
17	Characterisation of the Wetting Behaviour of Poor Wetting Food Powders and the Influence of Temperature and Film Formation. KONA Powder and Particle Journal, 2017, 34, 282-289.	1.7	19
18	The structural modification and rehydration behaviours of milk protein isolate powders: The effect of granule growth in the high shear granulation process. Journal of Food Engineering, 2016, 189, 1-8.	5.2	16

Junfu Ji

#	Article	IF	CITATIONS
19	Investigation of the rehydration behaviour of food powders by comparing the behaviour of twelve powders with different properties. Powder Technology, 2016, 297, 340-348.	4.2	63
20	Rehydration behaviours of high protein dairy powders: The influence of agglomeration on wettability, dispersibility and solubility. Food Hydrocolloids, 2016, 58, 194-203.	10.7	95
21	Assessment of measurement characteristics for rehydration of milk protein based powders. Food Hydrocolloids, 2016, 54, 151-161.	10.7	57
22	Effects of fluid bed agglomeration on the structure modification and reconstitution behaviour of milk protein isolate powders. Journal of Food Engineering, 2015, 167, 175-182.	5.2	71