John A Mercer

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/11179135/publications.pdf
Version: 2024-02-01

1	The effects of stride frequency manipulation on physiological and perceptual responses during backward and forward running with body weight support. European Journal of Applied Physiology, 2020, 120, 1519-1530.	1.2	2
2	Metabolic Costs During Backward Running with Body Weight Support. International Journal of Sports Medicine, 2019, 40, 269-275.	0.8	6
3	Influence of stride frequency manipulation on muscle activity during running with body weight support. Gait and Posture, 2018, 61, 473-478.	0.6	11
4	Muscle Activity and Physiological Responses During Running in Water and on Dry Land at Submaximal and Maximal Efforts. Journal of Strength and Conditioning Research, 2018, 32, 1960-1967.	1.0	3
5	Effects of treadmill running velocity on lower extremity coordination variability in healthy runners. Human Movement Science, 2018, 61, 144-150.	0.6	16
6	Running Economy While Running in Shoes Categorized as Maximal Cushioning. International Journal of Exercise Science, 2018, 11, 1031-1040.	0.5	2
7	Three-dimensional impact kinetics with foot-strike manipulations during running. Journal of Sport and Health Science, 2017, 6, 489-497.	3.3	24
8	Muscle activity during backward and forward running with body weight support. Human Movement Science, 2017, 55, 276-286.	0.6	10
9	Is the Relationship Between Stride Length, Frequency, and Velocity Influenced by Running on a Treadmill or Overground?. International Journal of Exercise Science, 2017, 10, 1067-1075.	0.5	20
10	Stride lengthâ€"velocity relationship during running with body weight support. Journal of Sport and Health Science, 2015, 4, 391-395.	3.3	11
11	Heelâ $€^{\prime \prime}$ toe running: A new look at the influence of foot strike pattern on impact force. Journal of Exercise Science and Fitness, 2015, 13, 29-34.	0.8	19
12	Determining if muscle activity is related to preferred stride frequency during running in the water and on land. European Journal of Applied Physiology, 2015, 115, 2691-2700.	1.2	6
13	Muscle Activity During Running With Different Body-Weight-Support Mechanisms: Aquatic Environment Versus Body-Weight-Support Treadmill. Journal of Sport Rehabilitation, 2014, 23, 300-306.	0.4	13

A Description of Variability of Pacing in Marathon Distance Running. International Journal of Exercise
Science, 2011, 4, 133-140.
$\left.\begin{array}{ll}\text { Insight into Muscle Activity during Deep Water Running. Medicine and Science in Sports and Exercise, } \\ 2009,41,1958-1964 .\end{array}\right] .0 .2$
Impact Attenuation and Variability during Running in Females: A Lifespan Investigation. Journal of
Sport Rehabilitation, 2008, 17, 230-242.

24 Biomechanics of Human Locomotion in Water. Exercise and Sport Sciences Reviews, 2008, 36, 160-169. 1.6
Kinetic consequences of constraining running behavior. Journal of Sports Science and Medicine, 2005,
$4,144-52$.

Individual Effects of Stride Length and Frequency on Shock Attenuation during Running. Medicine and Science in Sports and Exercise, 2003, 35, 307-313.
$0.2 \quad 88$

27	Physiological Cost of Running While Wearing Spring-Boots. Journal of Strength and Conditioning Research, 2003, 17, 314.	1.0	4
28	Relationship between shock attenuation and stride length during running at different velocities. European Journal of Applied Physiology, 2002, 87, 403-408.	1.2	11

[^0]1.0

11

Reliability and Validity of a Deep Water Running Graded Exercise Test. Measurement in Physical Education and Exercise Science, 1997, 1, 213-222.

[^0]: 29 Heart Rates at Equivalent Submaximal Levels of \&Vdot; O2 Do Not Differ Between Deep Water Running and Treadmill Running. Journal of Strength and Conditioning Research, 1998, 12, 161.

