Shanna Knights

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11175591/publications.pdf

Version: 2024-02-01

25 3,960 22 25 25 papers citations h-index g-index

25 25 25 6679 all docs citations times ranked citing authors

#	Article	IF	Citations
1	High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental Science, 2011, 4, 760.	15.6	1,153
2	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, $2013, 3, .$	1.6	719
3	Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257, 9193-9198.	3.1	476
4	Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Areaâ€Selective Atomic Layer Deposition for the Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 277-281.	11.1	238
5	Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3769-3776.	1.5	228
6	Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochemistry Communications, 2009, 11 , $2071-2076$.	2.3	196
7	Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfurâ€Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst. Advanced Materials, 2015, 27, 1229-1234.	11.1	126
8	Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. Journal of Power Sources, 2011, 196, 1795-1801.	4.0	105
9	Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing. Journal of the Electrochemical Society, 2018, 165, F3085-F3093.	1.3	89
10	Accelerated Membrane Durability Testing of Heavy Duty Fuel Cells. Journal of the Electrochemical Society, 2015, 162, F98-F107.	1.3	65
11	Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19, 27-38.	8.2	58
12	Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells. International Journal of Hydrogen Energy, 2011, 36, 11085-11092.	3.8	57
13	Web-like 3D Architecture of Pt Nanowires and Sulfur-Doped Carbon Nanotube with Superior Electrocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 93-98.	3.2	57
14	High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support. International Journal of Hydrogen Energy, 2014, 39, 15967-15974.	3.8	51
15	Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. ACS Catalysis, 2019, 9, 5365-5374.	5.5	47
16	Ptâ€"SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition. Journal of Power Sources, 2013, 238, 144-149.	4.0	44
17	Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells. Journal of Power Sources, 2016, 322, 17-25.	4.0	44
18	Empirical membrane lifetime model for heavy duty fuel cell systems. Journal of Power Sources, 2016, 336, 240-250.	4.0	40

#	Article	IF	CITATION
19	3D boron doped carbon nanorods/carbon-microfiber hybrid composites: synthesis and applications in a highly stable proton exchange membrane fuel cell. Journal of Materials Chemistry, 2011, 21, 18195.	6.7	38
20	Effect of CeOx Crystallite Size on the Chemical Stability of CeOx Nanoparticles. Journal of the Electrochemical Society, 2014, 161, F1075-F1080.	1.3	35
21	Highly Durable Platinum-Cobalt Nanowires by Microwave Irradiation as Oxygen Reduction Catalyst for PEM Fuel Cell. Electrochemical and Solid-State Letters, 2012, 15, B83.	2.2	30
22	Interactive Effects of Membrane Additives on PEMFC Catalyst Layer Degradation. Journal of the Electrochemical Society, 2013, 160, F27-F33.	1.3	25
23	UV–visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells. Journal of Power Sources, 2015, 281, 238-242.	4.0	18
24	Predicting Membrane Lifetime with Cerium Oxide in Heavy Duty Fuel Cell Systems. Journal of the Electrochemical Society, 2018, 165, F780-F785.	1.3	13
25	Relative Humidity Effect on Anode Durability in PEMFC Startup/Shutdown Processes. ECS Transactions, 2010, 33, 1273-1279.	0.3	8