Guoping Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11174848/publications.pdf

Version: 2024-02-01

304743 214800 48 2,258 22 47 h-index citations g-index papers 50 50 50 2196 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies. Journal of Colloid and Interface Science, 1993, 161, 138-147.	9.4	624
2	Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review. Frontiers in Plant Science, 2020, 11, 510.	3.6	294
3	Discrete particle simulation of agglomerate impact coalescence. Chemical Engineering Science, 1998, 53, 3381-3391.	3.8	192
4	An evaluation of mathematical models for predicting skin permeability. Journal of Pharmaceutical Sciences, 2008, 97, 584-598.	3.3	98
5	A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles. Journal of Controlled Release, 2004, 98, 139-155.	9.9	73
6	Novel Parallel Integration of Microfluidic Device Network for Emulsion Formation. Industrial & Engineering Chemistry Research, 2009, 48, 8881-8889.	3.7	70
7	Recent advances in predicting skin permeability of hydrophilic solutes. Advanced Drug Delivery Reviews, 2013, 65, 295-305.	13.7	65
8	Near-infrared hyperspectral imaging for non-destructive classification of commercial tea products. Journal of Food Engineering, 2018, 238, 70-77.	5.2	65
9	Compact model for multi-phase liquid–liquid flows in micro-fluidic devices. Lab on A Chip, 2005, 5, 646.	6.0	64
10	The capillary bridge between two spheres: New closed-form equations in a two century old problem. Advances in Colloid and Interface Science, 2016, 227, 53-62.	14.7	63
11	On the squeeze flow of a power-law fluid between rigid spheres. Journal of Non-Newtonian Fluid Mechanics, 2001, 100, 151-164.	2.4	50
12	Use of "Bricks and Mortar―Model To Predict Transdermal Permeation: Model Development and Initial Validation. Industrial & Engineering Chemistry Research, 2008, 47, 6465-6472.	3.7	43
13	Determination of partition and binding properties of solutes to stratum corneum. International Journal of Pharmaceutics, 2010, 398, 114-122.	5.2	43
14	Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling. Journal of Food Engineering, 2019, 249, 40-47.	5.2	43
15	In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals. Pharmaceutical Research, 2015, 32, 1779-1793.	3.5	36
16	Experimental and Theoretical Studies on the Binding of Epigallocatechin Gallate to Purified Porcine Gastric Mucin. Journal of Physical Chemistry B, 2012, 116, 13010-13016.	2.6	33
17	Uniform-sized silicone oil microemulsions: Preparation, investigation of stability and deposition on hair surface. Journal of Colloid and Interface Science, 2011, 364, 56-64.	9.4	31
18	Development of a Two-Dimensional Model for Predicting Transdermal Permeation with the Follicular Pathway: Demonstration with a Caffeine Study. Pharmaceutical Research, 2017, 34, 2036-2048.	3.5	30

#	Article	IF	CITATIONS
19	In Silico Modelling of Transdermal and Systemic Kinetics of Topically Applied Solutes: Model Development and Initial Validation for Transdermal Nicotine. Pharmaceutical Research, 2016, 33, 1602-1614.	3.5	26
20	Homoisoflavonoids Are Potent Glucose Transporter 2 (GLUT2) Inhibitors: A Potential Mechanism for the Glucose-Lowering Properties of <i>Polygonatum odoratum</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 3137-3145.	5.2	26
21	Concepts, processing, and recent developments in encapsulating essential oils. Chinese Journal of Chemical Engineering, 2021, 30, 255-271.	3.5	26
22	An evaluation of in-silico methods for predicting solute partition in multiphase complex fluids – A case study of octanol/water partition coefficient. Chemical Engineering Science, 2019, 197, 150-158.	3.8	25
23	Modeling of power characteristics for multistage rotor–stator mixers of shear-thinning fluids. Chemical Engineering Science, 2014, 117, 173-182.	3.8	21
24	Multilayered silicone oil droplets of narrow size distribution: Preparation and improved deposition on hair. Colloids and Surfaces B: Biointerfaces, 2012, 100, 42-49.	5.0	20
25	Free Energy Predictions of Ligand Binding to an α-Helix Using Steered Molecular Dynamics and Umbrella Sampling Simulations. Journal of Chemical Information and Modeling, 2014, 54, 2093-2104.	5.4	19
26	Mechanisms behind high CO2/CH4 selectivity using ZIF-8 metal organic frameworks with encapsulated ionic liquids: A computational study. Chemical Engineering Journal, 2021, 419, 129638.	12.7	19
27	CFD simulation of heat transfer and polyphenol oxidation during tea fermentation. Computers and Electronics in Agriculture, 2002, 34, 145-158.	7.7	14
28	Modeling transdermal permeation. Part I. Predicting skin permeability of both hydrophobic and hydrophilic solutes. AICHE Journal, 2010, 56, 1136-1146.	3.6	14
29	Investigation on the Uniformity and Stability of Sunflower Oil/Water Emulsions Prepared by a Shirasu Porous Glass Membrane. Industrial & Engineering Chemistry Research, 2008, 47, 6412-6417.	3.7	11
30	Modeling transdermal permeation. Part 2. Predicting the dermatopharmacokinetics of percutaneous solute. AICHE Journal, 2010, 56, 2551-2560.	3.6	9
31	Molecular and thermodynamic basis for EGCGâ€Keratin interactionâ€part II: Experimental investigation. AICHE Journal, 2013, 59, 4824-4827.	3.6	9
32	Molecular and thermodynamic basis for EGCGâ∈Keratin interactionâ∈part I: Molecular dynamics simulations. AICHE Journal, 2013, 59, 4816-4823.	3.6	9
33	In Silico Prediction of the Thermodynamic Equilibrium of Solute Partition in Multiphase Complex Fluids: A Case Study of Oil–Water Microemulsion. Langmuir, 2019, 35, 10855-10865.	3.5	9
34	Inhibition of the intestinal postprandial glucose transport by gallic acid and gallic acid derivatives. Food and Function, 2021, 12, 5399-5406.	4.6	9
35	Hydrodynamic force between two hard spheres tangentially translating in a power-law fluid. Chemical Engineering Science, 2006, 61, 1480-1488.	3.8	8
36	Kinetics and Equilibrium of Solute Diffusion into Human Hair. Annals of Biomedical Engineering, 2012, 40, 2719-2726.	2.5	8

#	Article	IF	CITATIONS
37	A Study on Fe2+– α-Helical-Rich Keratin Complex Formation Using Isothermal Titration Calorimetry and Molecular Dynamics Simulation. Journal of Pharmaceutical Sciences, 2014, 103, 1224-1232.	3.3	8
38	Prediction of the Liquid–Liquid Extraction Properties of Imidazolium-Based Ionic Liquids for the Extraction of Aromatics from Aliphatics. Journal of Chemical Information and Modeling, 2021, 61, 3376-3385.	5.4	8
39	Determining the Effect of pH on the Partitioning of Neutral, Cationic and Anionic Chemicals to Artificial Sebum: New Physicochemical Insight and QSPR Model. Pharmaceutical Research, 2018, 35, 141.	3.5	6
40	Molecular dynamics studies on separation of CO2/CH4 by the ionic liquids encapsulated ZIF-8. Journal of Membrane Science, 2022, 644, 120117.	8.2	6
41	Characterization Methods of Encapsulates. , 2010, , 101-125.		5
42	Determination of Solute Diffusion Properties in Artificial Sebum. Journal of Pharmaceutical Sciences, 2019, 108, 3003-3010.	3.3	5
43	Predicting Partition Coefficients of Neutral and Charged Solutes in the Mixed SLES–Fatty Acid Micellar System. Journal of Physical Chemistry B, 2020, 124, 1653-1664.	2.6	5
44	Multi-scale modelling of solute partition equilibria of micelle-water and microemulsion-water systems using molecular dynamics and COSMOtherm. Computer Aided Chemical Engineering, 2017, 40, 2773-2778.	0.5	4
45	A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals. Journal of Pharmaceutical Sciences, 2018, 107, 1122-1130.	3.3	4
46	In situ complex coacervation supported by self-coated polydopamine interlayer on uniform-sized essential oils droplet. Journal of Colloid and Interface Science, 2022, 623, 1027-1038.	9.4	3
47	In Silico Simulation of Simultaneous Percutaneous Absorption and Xenobiotic Metabolism: Model Development and a Case Study on Aromatic Amines. Pharmaceutical Research, 2020, 37, 241.	3.5	2
48	Evaluation of Constrained and Restrained Molecular Dynamics Simulation Methods for Predicting Skin Lipid Permeability. ACS Omega, 2021, 6, 35363-35374.	3.5	2