Syed Tahir Ata-Ul-Karim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/111738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct and dynamic distributions of multiple elements and their species in the rice rhizosphere. Plant and Soil, 2022, 471, 47-60.	1.8	5
2	Delineating soil nutrient management zones based on optimal sampling interval in medium- and small-scale intensive farming systems. Precision Agriculture, 2022, 23, 538-558.	3.1	7
3	Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images. Precision Agriculture, 2022, 23, 748-767.	3.1	4
4	Simulation of wheat yield using CERES-Wheat under rainfed and supplemental irrigation conditions in a semi-arid environment. Agricultural Water Management, 2022, 264, 107510.	2.4	3
5	Estimating the Impacts of Plant Internal Nitrogen Deficit at Key Top Dressing Stages on Corn Productivity and Intercepted Photosynthetic Active Radiation. Frontiers in Plant Science, 2022, 13, 864258.	1.7	2
6	The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. Chemosphere, 2022, 297, 134147.	4.2	1
7	Advances in the estimations and applications of critical nitrogen dilution curve and nitrogen nutrition index of major cereal crops. A review. Computers and Electronics in Agriculture, 2022, 197, 106998.	3.7	20
8	Determining the plant critical saturated water accumulation curve in maize. Field Crops Research, 2022, 284, 108556.	2.3	2
9	Multi-model ensembles for assessing the impact of future climate change on rainfed wheat productivity under various cultivars and nitrogen levels. European Journal of Agronomy, 2022, 139, 126554.	1.9	12
10	Estimating the Growth Indices and Nitrogen Status Based on Color Digital Image Analysis During Early Growth Period of Winter Wheat. Frontiers in Plant Science, 2021, 12, 619522.	1.7	5
11	Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River Valley, China. Journal of King Saud University - Science, 2021, 33, 101599.	1.6	21
12	Exploring the Impacts of Genotype-Management-Environment Interactions on Wheat Productivity, Water Use Efficiency, and Nitrogen Use Efficiency under Rainfed Conditions. Plants, 2021, 10, 2310.	1.6	5
13	Spatial difference of climate change effects on wheat protein concentration in China. Environmental Research Letters, 2021, 16, 124011.	2.2	12
14	Exploring the nitrogen source-sink ratio to quantify ear nitrogen accumulation in maize and wheat using critical nitrogen dilution curve. Field Crops Research, 2021, 274, 108332.	2.3	17
15	Predicting Equivalent Water Thickness in Wheat Using UAV Mounted Multispectral Sensor through Deep Learning Techniques. Remote Sensing, 2021, 13, 4476.	1.8	7
16	Integrated Application of Thiourea and Biochar Improves Maize Growth, Antioxidant Activity and Reduces Cadmium Bioavailability in Cadmium-Contaminated Soil. Frontiers in Plant Science, 2021, 12, 809322.	1.7	18
17	Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat (Triticum aestivum L.) grain. Geoderma, 2020, 357, 113923.	2.3	32
18	Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat, Journal of Hazardous Materials, 2020, 384, 121452.	6.5	30

SYED TAHIR ATA-UL-KARIM

#	Article	IF	CITATIONS
19	Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. European Journal of Agronomy, 2020, 113, 125967.	1.9	36
20	Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat?. Agriculture (Switzerland), 2020, 10, 500.	1.4	11
21	Analyzing uncertainty in critical nitrogen dilution curves. European Journal of Agronomy, 2020, 118, 126076.	1.9	29
22	Influence of Soil Properties and Aging on Antimony Toxicity for Barley Root Elongation. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 714-720.	1.3	8
23	Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sensing, 2019, 11, 1763.	1.8	126
24	Speciation and location of arsenic and antimony in rice samples around antimony mining area. Environmental Pollution, 2019, 252, 1439-1447.	3.7	52
25	Cd(II) retention and remobilization on δ-MnO2 and Mn(III)-rich δ-MnO2 affected by Mn(II). Environment International, 2019, 130, 104932.	4.8	32
26	Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environmental Science and Pollution Research, 2019, 26, 23027-23036.	2.7	82
27	Development of Chlorophyll-Meter-Index-Based Dynamic Models for Evaluation of High-Yield Japonica Rice Production in Yangtze River Reaches. Agronomy, 2019, 9, 106.	1.3	15
28	A scientometric review of biochar research in the past 20Âyears (1998–2018). Biochar, 2019, 1, 23-43.	6.2	160
29	Effects of various warming patterns on Cd transfer in soil-rice systems under Free Air Temperature Increase (FATI) conditions. Ecotoxicology and Environmental Safety, 2019, 168, 80-87.	2.9	15
30	Effect of Straw Incorporation on Corn Yield in North China: A Meta-Analysis. Journal of Biobased Materials and Bioenergy, 2019, 13, 532-536.	0.1	4
31	The oxidation and sorption mechanism of Sb on δ-MnO 2. Chemical Engineering Journal, 2018, 342, 429-437.	6.6	61
32	Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicology and Environmental Safety, 2018, 151, 255-265.	2.9	78
33	Electrokinetic delivery of anodic in situ generated active chlorine to remediate diesel-contaminated sand. Chemical Engineering Journal, 2018, 337, 499-505.	6.6	24
34	Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. European Journal of Agronomy, 2018, 93, 113-125.	1.9	96
35	Regional climate assessment of precipitation and temperature in Southern Punjab (Pakistan) using SimCLIM climate model for different temporal scales. Theoretical and Applied Climatology, 2018, 131, 121-131.	1.3	57

36 Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum) Tj ETQq0 0.0 rgBT /Overlock 10

#	Article	IF	CITATIONS
37	Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Frontiers in Plant Science, 2018, 9, 1834.	1.7	45
38	Pre-Drought Priming. Advances in Agronomy, 2018, 152, 51-85.	2.4	9
39	Determination of critical nitrogen concentration and dilution curve based on leaf area index for summer maize. Field Crops Research, 2018, 228, 195-203.	2.3	37
40	Simple Assessment of Nitrogen Nutrition Index in Summer Maize by Using Chlorophyll Meter Readings. Frontiers in Plant Science, 2018, 9, 11.	1.7	41
41	Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures. , 2018, , 499-524.		6
42	Estimation of Dynamic Canopy Variables Using Hyperspectral Derived Vegetation Indices Under Varying N Rates at Diverse Phenological Stages of Rice. Frontiers in Plant Science, 2018, 9, 1883.	1.7	14
43	Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Research, 2017, 208, 60-68.	2.3	47
44	Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Scientific Reports, 2017, 7, 42679.	1.6	47
45	Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environmental Science and Pollution Research, 2017, 24, 5811-5823.	2.7	67
46	In-season assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. European Journal of Agronomy, 2017, 90, 139-151.	1.9	40
47	Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research, 2017, 201, 32-40.	2.3	86
48	Development of a Critical Nitrogen Dilution Curve of Double Cropping Rice in South China. Frontiers in Plant Science, 2017, 8, 638.	1.7	35
49	Development of a Critical Nitrogen Dilution Curve Based on Leaf Area Duration in Wheat. Frontiers in Plant Science, 2017, 8, 1517.	1.7	19
50	A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China. PLoS ONE, 2016, 11, e0164545.	1.1	25
51	Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 2016, 7, 719.	1.7	118
52	Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods. Frontiers in Plant Science, 2016, 7, 981.	1.7	109
53	Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China. Frontiers in Plant Science, 2016, 7, 1496.	1.7	69
54	Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice. Frontiers in Plant Science, 2016, 7, 1829.	1.7	74

#	Article	IF	CITATIONS
55	Adaptation to and recovery from drought stress at vegetative stages in wheat (Triticum aestivum) cultivars. Functional Plant Biology, 2016, 43, 1159.	1.1	50
56	Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiology and Biochemistry, 2016, 106, 218-227.	2.8	109
57	In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Research, 2016, 195, 1-8.	2.3	85
58	Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 2016, 185, 12-20.	2.3	88
59	Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Research, 2016, 185, 59-68.	2.3	70
60	Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China. PLoS ONE, 2016, 11, e0153809.	1.1	9
61	Response of Nitrogen, Phosphorus and Potassium Fertilization on Productivity and Quality of Winter Rapeseed in Central China. International Journal of Agriculture and Biology, 2016, 18, 1137-1142.	0.2	10
62	Determination of Critical Nitrogen Dilution Curve Based on Stem Dry Matter in Rice. PLoS ONE, 2014, 9, e104540.	1.1	28
63	Development of critical nitrogen dilution curve in rice based on leaf dry matter. European Journal of Agronomy, 2014, 55, 20-28.	1.9	50
64	Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crops Research, 2014, 167, 76-85.	2.3	64
65	New Critical Nitrogen Curve Based on Leaf Area Index for Winter Wheat. Agronomy Journal, 2014, 106, 379-389.	0.9	41
66	Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crops Research, 2013, 149, 149-158.	2.3	111
67	Simulation of future global warming scenarios in rice paddies with an open-field warming facility. Plant Methods, 2011, 7, 41.	1.9	28