
Ali Zahedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11173655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina–zirconia ceramics. International Journal of Machine Tools and Manufacture, 2015, 90, 16-28.	13.4	81
2	Laser-assisted grinding of silicon nitride by picosecond laser. International Journal of Advanced Manufacturing Technology, 2017, 93, 2517-2529.	3.0	44
3	Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. International Journal of Advanced Manufacturing Technology, 2015, 76, 1479-1491.	3.0	34
4	Laser conditioning and structuring of grinding tools – a review. Advances in Manufacturing, 2017, 5, 35-49.	6.1	26
5	FEM Based Modeling of Cylindrical Grinding Process Incorporating Wheel Topography Measurement. Procedia CIRP, 2016, 46, 201-204.	1.9	20
6	Laser-assisted micro-milling of austenitic stainless steel X5CrNi18-10. Journal of Manufacturing Processes, 2019, 48, 174-184.	5.9	16
7	Conditioning of Vitrified Bond CBN Grinding Wheels Using a Picosecond Laser. Advanced Materials Research, 0, 1017, 573-579.	0.3	11
8	Effect of Water-Based Nanolubricants in Ultrasonic Vibration Assisted Grinding. Journal of Manufacturing and Materials Processing, 2018, 2, 80.	2.2	8
9	Microstructuring strategies of cBN grinding wheels. International Journal of Advanced Manufacturing Technology, 2017, 91, 3925-3932.	3.0	6
10	An analytical force and surface roughness model for cylindrical grinding of brittle materials. International Journal of Abrasive Technology, 2017, 8, 68.	0.2	6
11	Grinding efficiency and profile accuracy of diamond grinding wheels dressed with wire electrical discharge conditioning (WEDC). International Journal of Advanced Manufacturing Technology, 2021, 117, 2163-2171.	3.0	6
12	Real time In-Situ Quality Monitoring of Grinding Process using Microtechnology based Sensor Fusion. , 2020, , .		5
13	Optimization and Application of Laser-Dressed cBN Grinding Wheels. Advanced Materials Research, 2016, 1136, 90-96.	0.3	4
14	Laser-Profiling of Metal-Bonded Diamond Grinding Wheels. Materials Science Forum, 2016, 874, 272-276.	0.3	2
15	Modelling of the micro-grinding process considering the grinding tool topography. International Journal of Abrasive Technology, 2017, 8, 157.	0.2	2
16	High-speed high-efficient grinding of CMCs with structured grinding wheels. International Journal of Abrasive Technology, 2019, 9, 1.	0.2	2
17	Fusion of Optical and Microfabricated Eddy-Current Sensors for the Non-Destructive Detection of Grinding Burn. Advances in Science, Technology and Engineering Systems, 2021, 6, 1414-1421.	0.5	2
18	Application of an Ultrashort-pulsed Laser for Generation of Super-hydrophobic Surfaces. Current Directions in Biomedical Engineering, 2021, 7, 527-530.	0.4	2

#	Article	IF	CITATIONS
19	Microfabricated Eddy-Current Sensors for Non-Destructive Testing of the Micro Grinding Burn. , 2020, , .		1
20	Development of an Optical Sensor for the Non-Destructive Testing of Grinding Burn. , 2020, , .		1
21	Modelling of the micro-grinding process considering the grinding tool topography. International Journal of Abrasive Technology, 2017, 8, 157.	0.2	1
22	Kinematics of bonded abrasive machining processes. , 2022, , 137-151.		0