Andreas Verras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11171843/publications.pdf

Version: 2024-02-01

687363 794594 25 405 13 19 h-index citations g-index papers 647 25 25 25 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MAIP: a web service for predicting bloodâ€stage malaria inhibitors. Journal of Cheminformatics, 2021, 13, 13.	6.1	20
2	Accelerating the discovery of DGAT1 inhibitors through the application of parallel medicinal chemistry (PMC). Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1380-1385.	2.2	6
3	Benzimidazole-based DGAT1 inhibitors with a [3.1.0] bicyclohexane carboxylic acid moiety. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1182-1186.	2.2	3
4	Shared Consensus Machine Learning Models for Predicting Blood Stage Malaria Inhibition. Journal of Chemical Information and Modeling, 2017, 57, 445-453.	5 . 4	15
5	Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1 <i>H</i> henzimidazole Diacylglycerol Acyltransferase 1 Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 3594-3605.	6.4	65
6	Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles. Journal of Medicinal Chemistry, 2017, 60, 6771-6780.	6.4	17
7	Discovery of indazole aldosterone synthase (CYP11B2) inhibitors as potential treatments for hypertension. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2384-2388.	2.2	17
8	Discovery of Spirocyclic Aldosterone Synthase Inhibitors as Potential Treatments for Resistant Hypertension. ACS Medicinal Chemistry Letters, 2017, 8, 128-132.	2.8	12
9	Discovery of Triazole CYP11B2 Inhibitors with in Vivo Activity in Rhesus Monkeys. ACS Medicinal Chemistry Letters, 2015, 6, 861-865.	2.8	17
10	Discovery of Benzimidazole CYP11B2 Inhibitors with <i>in Vivo</i> Activity in Rhesus Monkeys. ACS Medicinal Chemistry Letters, 2015, 6, 573-578.	2.8	21
11	Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1657-1660.	2.2	14
12	Discovery and optimization of orally active cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6228-6233.	2.2	9
13	QSAR Prediction of Passive Permeability in the LLCâ€PK1 Cell Line: Trends in Molecular Properties and Crossâ€Prediction of Cacoâ€2 Permeabilities. Molecular Informatics, 2012, 31, 231-245.	2.5	27
14	The discovery of non-benzimidazole and brain-penetrant prolylcarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 658-665.	2.2	15
15	Discovery of a new class of potent prolylcarboxypeptidase inhibitors derived from alanine. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1774-1778.	2.2	10
16	Discovery of aminoheterocycles as potent and brain penetrant prolylcarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1727-1730.	2.2	5
17	Discovery of benzodihydroisofurans as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1550-1556.	2.2	7
18	A new class of prolylcarboxypeptidase inhibitors, Part 1: Discovery and evaluation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2811-2817.	2.2	6

Andreas Verras

#	Article	IF	CITATIONS
19	A new class of prolylcarboxypeptidase inhibitors, Part 2: The aminocyclopentanes. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2818-2822.	2.2	7
20	Synthesis of oxaspiropiperidines as a strategy for lowering logD. Tetrahedron Letters, 2011, 52, 6457-6459.	1.4	4
21	Discovery of benzimidazole pyrrolidinyl amides as prolylcarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1299-1305.	2.2	19
22	Peptidomic profiling of human cerebrospinal fluid identifies YPRPIHPA as a novel substrate for prolylcarboxypeptidase. Proteomics, 2010, 10, 2882-2886.	2.2	15
23	Chapter 10 Cytochrome P450 Enzymes: Computational Approaches to Substrate Prediction. Annual Reports in Computational Chemistry, 2006, 2, 171-195.	1.7	3
24	Cytochrome P450 active site plasticity: attenuation of imidazole binding in cytochrome P450cam by an L244A mutation. Protein Engineering, Design and Selection, 2006, 19, 491-496.	2.1	23
25	Computer-Assisted Design of Selective Imidazole Inhibitors for Cytochrome P450 Enzymes. Journal of Medicinal Chemistry, 2004, 47, 3572-3579.	6.4	48