
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11171206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Lens Spectrometry Reveals Thermo-Optical Property Tuning of Conjugated Polymer Nanoparticles Prepared by Microfluidics. ACS Applied Polymer Materials, 2022, 4, 6219-6228.	4.4	2
2	Different PEGâ€PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIRâ€Emitting <i>Ï€</i> â€Conjugated Polymer Contrast Agents. Advanced Healthcare Materials, 2021, 10, e2001089.	7.6	9
3	Synthesis of IR-emitting HgTe quantum dots using an ionic liquid-based tellurium precursor. Nanoscale Advances, 2021, 3, 4062-4064.	4.6	О
4	Low molecular weight PEG–PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. Journal of Materials Chemistry B, 2019, 7, 5115-5124.	5.8	33
5	Confinement Effects and Charge Dynamics in Zn ₃ N ₂ Colloidal Quantum Dots: Implications for QD-LED Displays. ACS Applied Nano Materials, 2019, 2, 7214-7219.	5.0	20
6	An atom efficient, single-source precursor route to plasmonic CuS nanocrystals. Nanoscale Advances, 2019, 1, 522-526.	4.6	15
7	In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS Applied Materials & Interfaces, 2019, 11, 46525-46535.	8.0	15
8	Synthetic routes to mercury chalcogenide quantum dots. Journal of Materials Chemistry C, 2018, 6, 5097-5112.	5.5	34
9	Bright, near infrared emitting PLGA–PEG dye-doped CN-PPV nanoparticles for imaging applications. RSC Advances, 2017, 7, 15255-15264.	3.6	23
10	Post-polymerization C–H Borylation of Donor–Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging. ACS Applied Materials & Interfaces, 2017, 9, 28243-28249.	8.0	53
11	Aptamer-modified polymer nanoparticles for targeted drug delivery. BioNanoMaterials, 2016, 17, 43-51.	1.4	15
12	Hydrophobin-Encapsulated Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 4887-4893.	8.0	15
13	Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity. Bioconjugate Chemistry, 2016, 27, 414-426.	3.6	43
14	Evaluation of CdTe/CdS/ZnS core/shell/shell quantum dot toxicity on three-dimensional spheroid cultures. Toxicology Research, 2016, 5, 126-135.	2.1	26
15	One-pot aqueous synthesis of highly strained CdTe/CdS/ZnS nanocrystals and their interactions with cells. RSC Advances, 2015, 5, 7485-7494.	3.6	18
16	The synthesis of CdTe/ZnS core/shell quantum dots using molecular single-source precursors. Journal of Materials Chemistry C, 2015, 3, 8425-8433.	5.5	23
17	Interactions of stealth conjugated polymer nanoparticles with human whole blood. Journal of Materials Chemistry B, 2015, 3, 2463-2471.	5.8	19
18	Novel POSS–PCU Nanocomposite Material as a Biocompatible Coating for Quantum Dots. Bioconjugate Chemistry, 2015, 26, 2384-2396.	3.6	30

#	Article	IF	CITATIONS
19	Near-infrared quantum dots for HER2 localization and imaging of cancer cells. International Journal of Nanomedicine, 2014, 9, 1323.	6.7	50
20	Three bisphosphonate ligands improve the water solubility of quantum dots. Faraday Discussions, 2014, 175, 153-169.	3.2	5
21	Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging. Nanoscale, 2014, 6, 8376-8386.	5.6	48
22	Recent advances in quantum dot synthesis. SPR Nanoscience, 2012, , 208-243.	0.6	4
23	Wide-field single photon counting imaging with an ultrafast camera and an image intensifier. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 695, 306-308.	1.6	1
24	Identifying the Decomposition Product of Singleâ€ 5 ource Precursors: Towards Waterâ€ 6 oluble Quantum Dots. ChemPlusChem, 2012, 77, 192-195.	2.8	8
25	Synthesis and optical characterization of infra-red emitting mercury sulfide (HgS) quantum dots. Journal of Materials Chemistry, 2011, 21, 7331.	6.7	33
26	The one-pot synthesis of core/shell/shell CdTe/CdSe/ZnSe quantum dots in aqueous media for in vivo deep tissue imaging. Journal of Materials Chemistry, 2011, 21, 2877.	6.7	39
27	Luminescent quantum-dot-sized conjugated polymernanoparticles—nanoparticle formation in a miniemulsion system. Journal of Materials Chemistry, 2011, 21, 1797-1803.	6.7	60
28	The room-temperature structural and optical transformation of cadmium chalcogenide quantum dots triggered by reactive cations. Journal of Materials Chemistry, 2011, 21, 11592.	6.7	17
29	Some aspects of quantum dot toxicity. Chemical Communications, 2011, 47, 7039.	4.1	207
30	The Room-Temperature Synthesis of Anisotropic CdHgTe Quantum Dot Alloys: A "Molecular Welding― Effect. Journal of the American Chemical Society, 2011, 133, 3328-3331.	13.7	28
31	The nature of quantum dot capping ligands. Journal of Materials Chemistry, 2010, 20, 5797.	6.7	332
32	The photophysics of europium and terbium polyoxometalates and their interaction with serum albumin: a time-resolved luminescence study. Physical Chemistry Chemical Physics, 2010, 12, 7266.	2.8	64
33	Magnetic Conjugated Polymer Nanoparticles as Bimodal Imaging Agents. Journal of the American Chemical Society, 2010, 132, 9833-9842.	13.7	164
34	Rapid wide-field photon counting imaging with microsecond time resolution. Optics Express, 2010, 18, 25292.	3.4	26
35	Phospholipid Encapsulated Semiconducting Polymer Nanoparticles: Their Use in Cell Imaging and Protein Attachment. Journal of the American Chemical Society, 2010, 132, 3989-3996.	13.7	206
36	Colloidal and optical stability of PEG-capped and phospholipid-encapsulated semiconducting polymer nanospheres in different aqueous media. Photochemical and Photobiological Sciences, 2010, 9, 1159-1166.	2.9	14

#	Article	IF	CITATIONS
37	Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging. Journal of Materials Chemistry, 2009, 19, 8341.	6.7	25
38	Simple conjugated polymer nanoparticles as biological labels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 2751-2759.	2.1	44
39	Synthesis, characterisation and intracellular imaging of PEG capped BEHP-PPV nanospheres. Chemical Communications, 2009, , 2490.	4.1	70
40	Synthesis and shape control of mercury selenide (HgSe) quantum dots. Journal of Materials Chemistry, 2008, 18, 3474.	6.7	48
41	Luminescence enhancement of a europium containing polyoxometalate on interaction with bovine serum albumin. Photochemical and Photobiological Sciences, 2008, 7, 734.	2.9	37
42	Directed growth of gold nanostructures using a nucleoside/nucleotide. Journal of Materials Chemistry, 2007, 17, 3588.	6.7	8
43	Optical spectroscopy following the incorporation of a rare-earth containing (Eu) polyoxometalate into a sol-gel derived media. Physical Chemistry Chemical Physics, 2007, 9, 6012.	2.8	11
44	Ionic liquid passivated CdSe nanocrystals. Chemical Communications, 2007, , 574-576.	4.1	47
45	A facile route to CdTe nanoparticles and their use in bio-labelling. Journal of Materials Chemistry, 2007, 17, 1989.	6.7	83
46	The Synthesis of Silica Nanospheres Doped with Polyoxometalates. Journal of the American Chemical Society, 2005, 127, 12812-12813.	13.7	44
47	Nucleotide passivated cadmium sulfide quantum dots. Chemical Communications, 2005, , 4830.	4.1	23
48	Organometallic based strategies for metal nanocrystal synthesis. Chemical Communications, 2005, , 3002.	4.1	103
49	Semiconductor quantum dots and free radical induced DNA nicking. Chemical Communications, 2005, , 121.	4.1	272
50	Semiconductor Quantum Dots as Biological Imaging Agents. Angewandte Chemie - International Edition, 2004, 43, 4129-4131.	13.8	147
51	The synthesis of Ill–V semiconductor nanoparticles using indium and gallium diorganophosphides as single-molecular precursors. Journal of Materials Chemistry, 2004, 14, 629-636.	6.7	38
52	A simple metalorganic route to organically passivated mercury telluride nanocrystals. Journal of Materials Chemistry, 2003, 13, 1076-1078.	6.7	73
53	The synthesis of luminescent adenosine triphosphate passivated cadmium sulfide nanoparticles. Journal of Materials Chemistry, 2003, 13, 1859.	6.7	29
54	Solution routes to Ill–V semiconductor quantum dots. Current Opinion in Solid State and Materials Science, 2002, 6, 355-363.	11.5	94

#	Article	IF	CITATIONS
55	Trialkylphosphine oxide/amine stabilised silver nanocrystals—the importance of steric factors and Lewis basicity in capping agents. Journal of Materials Chemistry, 2002, 12, 2671-2674.	6.7	45
56	A Novel Metalorganic Route to Nanocrystallites of Zinc Phosphide. Chemistry of Materials, 2001, 13, 4500-4505.	6.7	52
57	On the synthesis and manipulation of InAs quantum dots. Journal of Materials Chemistry, 2000, 10, 1939-1943.	6.7	31
58	A simple one phase preparation of organically capped gold nanocrystals. Chemical Communications, 2000, , 183-184.	4.1	81
59	The synthesis of cadmium phosphide nanoparticles using cadmium diorganophosphide precursors. Journal of Materials Chemistry, 1999, 9, 243-247.	6.7	33
60	Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots. Chemical Communications, 1999, , 2235-2241.	4.1	145
61	Synthesis of Passivated Metal Nanoparticles. Materials Research Society Symposia Proceedings, 1999, 581, 47.	0.1	0
62	A Novel Synthesis of Cadmium Phosphide Nanoparticles Using the Single-Source Precursor [MeCdPtBu2]3. Advanced Materials, 1998, 10, 527-528.	21.0	46
63	A novel metalorganic route for the direct and rapid synthesis of monodispersed quantum dots of indium phosphide. Chemical Communications, 1998, , 2459-2460.	4.1	54
64	Photosensitized and Photothermal Stimulation of Cellular Membranes by Organic Thin Films and Nanoparticles. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3