List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11170517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60-88.	7.0	7,976
2	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	3.8	2,003
3	Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Transactions on Medical Imaging, 2016, 35, 1160-1169.	5.4	926
4	Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 2016, 6, 26286.	1.6	764
5	Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 2017, 35, 303-312.	7.0	728
6	Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncology, The, 2020, 21, 233-241.	5.1	407
7	Deep learning in histopathology: the path to the clinic. Nature Medicine, 2021, 27, 775-784.	15.2	355
8	Computer-Aided Detection of Prostate Cancer in MRI. IEEE Transactions on Medical Imaging, 2014, 33, 1083-1092.	5.4	338
9	Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Medical Image Analysis, 2019, 58, 101544.	7.0	311
10	The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. American Journal of Surgical Pathology, 2020, 44, e87-e99.	2.1	292
11	From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 550-560.	5.4	269
12	State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC: Cardiovascular Imaging, 2019, 12, 1549-1565.	2.3	238
13	1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience, 2018, 7, .	3.3	221
14	Stain Specific Standardization of Whole-Slide Histopathological Images. IEEE Transactions on Medical Imaging, 2016, 35, 404-415.	5.4	218
15	Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks. IEEE Transactions on Medical Imaging, 2018, 37, 2126-2136.	5.4	184
16	Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Medical Physics, 2017, 44, 533-546.	1.6	173
17	Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Scientific Reports, 2017, 7, 5110.	1.6	171
18	Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine, 2022, 28, 154-163.	15.2	143

#	Article	IF	CITATIONS
19	Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Journal of Medical Imaging, 2017, 4, 1.	0.8	126
20	Neural Image Compression for Gigapixel Histopathology Image Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 567-578.	9.7	125
21	Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Scientific Reports, 2019, 9, 864.	1.6	107
22	Learning to detect lymphocytes in immunohistochemistry with deep learning. Medical Image Analysis, 2019, 58, 101547.	7.0	98
23	Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Modern Pathology, 2021, 34, 660-671.	2.9	84
24	Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images. IEEE Transactions on Medical Imaging, 2016, 35, 2141-2150.	5.4	68
25	Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images—The ACDC@LungHP Challenge 2019. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 429-440.	3.9	51
26	Residual cyclegan for robust domain transformation of histopathological tissue slides. Medical Image Analysis, 2021, 70, 102004.	7.0	48
27	Detection of Prostate Cancer in Whole-Slide Images Through End-to-End Training With Image-Level Labels. IEEE Transactions on Medical Imaging, 2021, 40, 1817-1826.	5.4	48
28	Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer. Scientific Reports, 2020, 10, 14398.	1.6	40
29	Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks. PeerJ, 2019, 7, e8242.	0.9	39
30	Comparison of different methods for tissue segmentation in histopathological whole-slide images. , 2017, , .		29
31	Streaming Convolutional Neural Networks for End-to-End Learning With Multi-Megapixel Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 1581-1590.	9.7	28
32	Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks. PeerJ, 2019, 7, e6335.	0.9	24
33	Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics. Breast, 2021, 56, 78-87.	0.9	18
34	Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies—Current Status and Next Steps. European Urology Focus, 2021, 7, 687-691.	1.6	18
35	Prostate158 - An expert-annotated 3T MRI dataset and algorithm for prostate cancer detection. Computers in Biology and Medicine, 2022, 148, 105817.	3.9	17
36	No pixel-level annotations needed. Nature Biomedical Engineering, 2019, 3, 855-856.	11.6	14

#	Article	IF	CITATIONS
37	Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 617-621.	1.4	14
38	Predicting biochemical recurrence of prostate cancer with artificial intelligence. Communications Medicine, 2022, 2, .	1.9	8
39	Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and comparison to normal age-related variation. Pathology, 2022, 54, 318-327.	0.3	6
40	Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning. Npj Breast Cancer, 2022, 8, 13.	2.3	6
41	A Decade of <i>GigaScience</i> : The Challenges of Gigapixel Pathology Images. GigaScience, 2022, 11, .	3.3	3
42	Predicting MYC translocation in HE specimens of diffuse large B-cell lymphoma through deep learning. , 2020, , .		2
43	Automatic tumour segmentation in H&E-stained whole-slide images of the pancreas , 2022, , .		0