Bernhard Reischl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116935/publications.pdf

Version: 2024-02-01

687363 677142 22 585 13 22 citations h-index g-index papers 31 31 31 671 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	4
2	Homogeneous nucleation of carbon dioxide in supersonic nozzles II: molecular dynamics simulations and properties of nucleating clusters. Physical Chemistry Chemical Physics, 2021, 23, 4517-4529.	2.8	12
3	Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching. Journal of Physical Chemistry B, 2021, 125, 3909-3917.	2.6	5
4	New Particle Formation from the Vapor Phase: From Barrier-Controlled Nucleation to the Collisional Limit. Journal of Physical Chemistry Letters, 2021, 12, 4593-4599.	4.6	8
5	Atomistic Simulation of Ice Nucleation on Silver Iodide (0001) Surfaces with Defects. Journal of Physical Chemistry C, 2020, 124, 436-445.	3.1	20
6	Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories. Physical Chemistry Chemical Physics, 2020, 22, 19282-19298.	2.8	11
7	Tip dependence of three-dimensional scanning force microscopy images of calcite–water interfaces investigated by simulation and experiments. Nanoscale, 2020, 12, 12856-12868.	5.6	15
8	Atomistic Simulation of Atomic Force Microscopy Imaging of Hydration Layers on Calcite, Dolomite, and Magnesite Surfaces. Journal of Physical Chemistry C, 2019, 123, 14985-14992.	3.1	30
9	Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces. Atmospheric Chemistry and Physics, 2019, 19, 13355-13366.	4.9	31
10	Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy. Physical Review Letters, 2018, 120, 116101.	7.8	58
11	Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities. Measurement Science and Technology, 2017, 28, 034004.	2.6	6
12	Atomistic simulation of the measurement of mechanical properties of gold nanorods by AFM. Scientific Reports, 2017, 7, 16257.	3.3	6
13	Can Point Defects in Surfaces in Solution be Atomically Resolved by Atomic Force Microscopy?. Physical Review Letters, 2016, 117, 226101.	7.8	18
14	Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy. Nanotechnology, 2016, 27, 415709.	2.6	20
15	Flexible and modular virtual scanning probe microscope. Computer Physics Communications, 2015, 196, 429-438.	7. 5	10
16	Mechanism of atomic force microscopy imaging of three-dimensional hydration structures at a solid-liquid interface. Physical Review B, 2015, 92, .	3.2	96
17	Nanoindentation of gold nanorods with an atomic force microscope. Materials Research Express, 2014, 1, 045042.	1.6	5
18	Ab initio Kinetic Monte Carlo simulations of dissolution at the NaCl–water interface. Physical Chemistry Chemical Physics, 2014, 16, 22545-22554.	2.8	30

#	Article	IF	CITATIONS
19	Atomistic simulations of friction at an ice-ice interface. Friction, 2013, 1, 242-251.	6.4	16
20	Free Energy Approaches for Modeling Atomic Force Microscopy in Liquids. Journal of Chemical Theory and Computation, 2013, 9, 600-608.	5.3	68
21	A simple approximation for forces exerted on an AFM tip in liquid. Journal of Chemical Physics, 2013, 138, 154703.	3.0	76
22	The statistics of electric field fluctuations in liquid water. Molecular Physics, 2009, 107, 495-502.	1.7	39