

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11169168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite. Bioresource Technology, 2011, 102, 3877-3882.	9.6	85
2	Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite. Hydrometallurgy, 2015, 156, 89-98.	4.3	66
3	Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy. Hydrometallurgy, 2010, 100, 129-135.	4.3	58
4	Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy. Hydrometallurgy, 2011, 107, 13-21.	4.3	53
5	Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy, 2010, 105, 179-185.	4.3	50
6	Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. International Journal of Mineral Processing, 2010, 94, 52-57.	2.6	50
7	A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles. Minerals Engineering, 2013, 48, 31-35.	4.3	45
8	Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis. Hydrometallurgy, 2009, 99, 45-50.	4.3	43
9	The differential adsorption mechanism of hexahydrated iron and hydroxyl irons on a pyrite (1 0 0) surface: A DFT study and XPS characterization. Minerals Engineering, 2019, 138, 215-225.	4.3	37
10	Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles. Minerals Engineering, 2014, 69, 185-195.	4.3	32
11	XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30 °C and 48 °C. Minerals Engineering, 2015, 70, 99-108.	4.3	31
12	Investigation of Elemental Sulfur Speciation Transformation Mediated by Acidithiobacillus ferrooxidans. Current Microbiology, 2009, 58, 300-307.	2.2	29
13	Growth and surface properties of new thermoacidophilic Archaea strain Acidianus manzaensis YN-25 grown on different substrates. Transactions of Nonferrous Metals Society of China, 2008, 18, 1374-1378.	4.2	26
14	A XANES and XRD study of chalcopyrite bioleaching with pyrite. Minerals Engineering, 2016, 89, 157-162.	4.3	22
15	The effect of chloride ions on the electrochemical dissolution of chalcopyrite in sulfuric acid solutions. Electrochimica Acta, 2017, 253, 257-267.	5.2	21
16	The galvanic effect of pyrite enhanced (bio)leaching of enargite (Cu3AsS4). Hydrometallurgy, 2021, 202, 105613.	4.3	14
17	Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface. Minerals (Basel, Switzerland), 2018, 8, 366.	2.0	13
18	An XAS study of silver species evolution in silver-catalysed chalcopyrite bioleaching. Hydrometallurgy, 2019, 186, 252-259.	4.3	13

YI YANG

#	Article	IF	CITATIONS
19	Chalcopyrite leaching in ammonium chloride solutions under ambient conditions: Insight into the dissolution mechanism by XANES, Raman spectroscopy and electrochemical studies. Minerals Engineering, 2021, 170, 107063.	4.3	12
20	Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process. BioMetals, 2016, 29, 25-37.	4.1	11
21	In situ characterization of change in superficial organic components of thermoacidophilic archaeon Acidianus manzaensis YN-25. Research in Microbiology, 2018, 169, 590-597.	2.1	10
22	An in-situ synchrotron XAS study on the evolution of aqueous arsenic species in acid pressure leaching. Hydrometallurgy, 2018, 175, 11-19.	4.3	9
23	The Evidence of Decisive Effect of Both Surface Microstructure and Speciation of Chalcopyrite on Attachment Behaviors of Extreme Thermoacidophile Sulfolobus metallicus. Minerals (Basel,) Tj ETQq1 1 0.784314	4 r g.B T /Оv	eræck 10 Tf
24	Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus at 65 °C. Journal of Central South University, 2012, 19, 1961-1966.	3.0	7
25	In Situ Electrochemical Investigation of Pyrite Assisted Leaching of Chalcopyrite. Journal of the Electrochemical Society, 2018, 165, H813-H819.	2.9	7
26	Electrochemical and spectroscopic analysis of enargite (Cu3AsS4) dissolution mechanism in sulfuric acid solution. Hydrometallurgy, 2020, 194, 105346.	4.3	6
27	The impacts of pyrite/pyrrhotite on aqueous arsenic species in arsenopyrite pressure leaching: An XAS study. Minerals Engineering, 2020, 155, 106447.	4.3	6
28	Differential utilization of cyclic, orthorhombic α- and chain-like polymeric μ-sulfur by Acidithiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China, 2014, 24, 1562-1570.	4.2	5
29	Microstructure evolution of chalcopyrite agglomerates during leaching – A synchrotron-based X-ray CT approach combined with a data-constrained modelling (DCM). Hydrometallurgy, 2021, 201, 105586.	4.3	4
30	A Sulfur K-Edge XANES and Raman Study on the Effect of Chloride Ion on Bacterial and Chemical Leaching of Chalcopyrite at 25°C. Mining, Metallurgy and Exploration, 2019, 36, 343-352.	0.8	1
31	Characterization and Localized Insight into Leaching of Sulfide Minerals. Solid State Phenomena, 0, 262, 261-264.	0.3	0
32	Characterization of Preg-Robbing Carbonaceous Minerals from the Shuiyindong Carlin-Type Gold Deposit Via Spectroscopic Techniques. Mining, Metallurgy and Exploration, 0, , 1.	0.8	0