
Aili Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11169117/publications.pdf Version: 2024-02-01

ΔΗΤΙΛΛΑΝΟ

#	Article	IF	CITATIONS
1	Facile lattice tensile strain compensation in mixed-cation halide perovskite solar cells. Journal of Energy Chemistry, 2022, 66, 422-428.	12.9	29
2	The Voltage Loss in Tin Halide Perovskite Solar Cells: Origins and Perspectives. Advanced Functional Materials, 2022, 32, 2108832.	14.9	43
3	Inhibiting octahedral tilting for stable <scp>CsPbI₂Br</scp> solar cells. InformaÄnÃ- Materiály, 2022, 4, .	17.3	17
4	lon Migration in Organic–Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives. Small, 2022, 18, e2105783.	10.0	53
5	Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. IScience, 2022, 25, 103599.	4.1	13
6	Magnesium doped spinel NiCo2O4 for improved hole extraction in efficient inverted perovskite solar cells. Materials Today Communications, 2022, 31, 103750.	1.9	1
7	Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability. Chemical Engineering Journal, 2021, 420, 127579.	12.7	14
8	Ionic liquid reducing energy loss and stabilizing CsPbI2Br solar cells. Nano Energy, 2021, 81, 105631.	16.0	71
9	Eco-friendly antisolvent enabled inverted MAPbI ₃ perovskite solar cells with fill factors over 84%. Green Chemistry, 2021, 23, 3633-3641.	9.0	22
10	Construct efficient CsPbI2Br solar cells by minimizing the open-circuit voltage loss through controlling the peripheral substituents of hole-transport materials. Chemical Engineering Journal, 2021, 425, 131675.	12.7	34
11	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	10.3	149
12	Dynamically controlled growth of Cu–Mo–O nanosheets for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 9337-9344.	5.5	3
13	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coordination Chemistry Reviews, 2020, 420, 213408.	18.8	51
14	Vacancy defect modulation in hot-casted NiO film for efficient inverted planar perovskite solar cells. Journal of Energy Chemistry, 2020, 48, 426-434.	12.9	44
15	Insights into Ultrafast Carrier Dynamics in Perovskite Thin Films and Solar Cells. ACS Photonics, 2020, 7, 1893-1907.	6.6	34
16	Aqueous solvent-regulated crystallization and interfacial modification in perovskite solar cells with enhanced stability and performance. Journal of Power Sources, 2020, 471, 228447.	7.8	13
17	Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochimica Acta, 2020, 338, 135697.	5.2	25
18	Secondary lateral growth of MAPbI ₃ grains for the fabrication of efficient perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 3217-3225.	5.5	24

Aili Wang

#	Article	IF	CITATIONS
19	Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846.	16.0	54
20	Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 2020, 398, 125594.	12.7	85
21	Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18626-18633.	10.3	33
22	Tailored synthesis of Zn–N co-doped porous MoC nanosheets towards efficient hydrogen evolution. Nanoscale, 2019, 11, 1700-1709.	5.6	39
23	Emerging alkali metal ion (Li ⁺ , Na ⁺ , K ⁺ and Rb ⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7, 24150-24163.	10.3	116
24	Co Nanoparticles@N-doped carbon coated on carbon Nanotube@Defective silica as non-noble photocathode for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 9279-9286.	7.1	5
25	TiO2 nanodots anchored on nitrogen-doped carbon nanotubes encapsulated cobalt nanoparticles as photocatalysts with photo-enhanced catalytic activity towards the pollutant removal. Journal of Colloid and Interface Science, 2018, 526, 158-166.	9.4	32
26	Simultaneous water recovery and hydrogen production by bifunctional electrocatalyst of nitrogen-doped carbon nanotubes protected cobalt nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 12110-12118.	7.1	17
27	Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Research, 2017, 10, 2599-2609.	10.4	69
28	The Degradation of Indigo Sodium Disulphonate by Chromium Isomorphic Replacement in Magnetite. Journal of the Chinese Chemical Society, 2016, 63, 611-617.	1.4	2
29	Influences of Flow Intensity, Cooling Rate and Nucleation Density at Ingot Surface on Deflective Growth of Dendrites for Al-based Alloy. ISIJ International, 2009, 49, 1010-1018.	1.4	4