Ff Mahmoud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11168659/publications.pdf

Version: 2024-02-01

		567281	414414	
34	1,984	15	32	
papers	citations	h-index	g-index	
34	34	34	872	
27	37	37	0/2	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 2011, 35, 412-425.	4.2	445
2	Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, 2012, 218, 7406-7420.	2.2	305
3	Static and stability analysis of nonlocal functionally graded nanobeams. Composite Structures, 2013, 96, 82-88.	5 . 8	229
4	Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 2013, 37, 4787-4797.	4.2	192
5	Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Composite Structures, 2013, 99, 193-201.	5.8	147
6	Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. International Journal of Mechanical Sciences, 2014, 79, 31-37.	6.7	146
7	Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Applied Mathematics and Computation, 2013, 224, 760-774.	2.2	114
8	Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories. International Journal of Mechanical Sciences, 2016, 105, 126-134.	6.7	74
9	Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. International Journal of Mechanical Sciences, 2013, 75, 223-232.	6.7	38
10	Finite element analysis of functionally graded nano-scale films. Finite Elements in Analysis and Design, 2013, 74, 41-52.	3.2	37
11	Experimental and numerical analysis of pinned-joints composite laminates: Effects of stacking sequences. Journal of Composite Materials, 2013, 47, 3353-3366.	2.4	32
12	Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects. International Journal of Mechanical Sciences, 2017, 123, 117-132.	6.7	26
13	Modeling of viscoelastic contact-impact problems. Applied Mathematical Modelling, 2010, 34, 2336-2352.	4.2	21
14	Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies. International Journal of Mechanical Sciences, 2013, 77, 356-364.	6.7	20
15	Modeling of nonlinear viscoelastic contact problems with large deformations. Applied Mathematical Modelling, 2013, 37, 6730-6745.	4.2	16
16	Size-dependent analysis of functionally graded ultra-thin films. Structural Engineering and Mechanics, 2012, 44, 431-448.	1.0	15
17	Finite element modeling for elastic nano-indentation problems incorporating surface energy effect. International Journal of Mechanical Sciences, 2014, 84, 158-170.	6.7	14
18	Dynamic contact of deformable bodies. Computers and Structures, 1990, 36, 169-181.	4.4	13

#	Article	IF	Citations
19	Simulation of structural elements in receding/advancing contact. Computers and Structures, 1986, 22, 629-635.	4.4	11
20	An adaptive incremental approach for the solution of convex programming models. Mathematics and Computers in Simulation, 1993, 35, 501-508.	4.4	11
21	An incremental mathematical programming model for solving multi-phase frictional contact problems. Computers and Structures, 1998, 68, 567-581.	4.4	11
22	Analysis of thermoviscoelastic frictionless contact of layered bodies. Finite Elements in Analysis and Design, 2011, 47, 307-318.	3.2	11
23	The response of viscoelastic-frictionless bodies under normal impact. International Journal of Mechanical Sciences, 2010, 52, 446-454.	6.7	10
24	A new mindlin FG plate model incorporating microstructure and surface energy effects. Structural Engineering and Mechanics, 2015, 53, 105-130.	1.0	10
25	A generalized adaptive incremental approach for solving inequality problems of convex nature. Structural Engineering and Mechanics, 2004, 18, 461-474.	1.0	10
26	Solution of the non-conformal unbonded contact problems by the incremental convex programming method. Computers and Structures, 1991, 39, 1-8.	4.4	6
27	An incremental convex programming model of the elastic frictional contact problems. Structural Engineering and Mechanics, 2006, 23, 431-447.	1.0	6
28	Contour design for contact stress minimization by interior penalty method. Applied Mathematical Modelling, 1989, 13, 596-600.	4.2	5
29	A direct automated procedure for frictionless thermoelastic contact problems. Engineering Fracture Mechanics, 1989, 33, 157-164.	4.3	3
30	Nonlocal finite element modeling of the tribological behavior of nano-structured materials. Interaction and Multiscale Mechanics, 2010, 3, 267-276.	0.4	3
31	A numerical solution for contact problem with finite deformation in nonlinear Schapery viscoelastic solids. Ain Shams Engineering Journal, 2012, 3, 141-151.	6.1	2
32	Analysis of friction contact between wavy surfaces. Wear, 1985, 104, 95-101.	3.1	1
33	A MATHEMATICAL MODEL FOR THE STUDY OF THE DYNAMIC-VISCO-ELASTIC CONTACT PROBLEMS. , 2000, , 205-214.		O
34	Optimal shape design of contact systems. Structural Engineering and Mechanics, 2006, 24, 155-180.	1.0	0