Jimmy Mays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11167862/publications.pdf Version: 2024-02-01

Ιιμαν Μανς

#	Article	lF	CITATIONS
1	Chain flexibility and glass transition temperatures of poly(n-alkyl (meth)acrylate)s: Implications of tacticity and chain dynamics. Polymer, 2021, 213, 123207.	1.8	17
2	Effect of microstructure on chain flexibility and glass transition temperature of polybenzofulvene. Polymer, 2021, 212, 123276.	1.8	2
3	Characterization of long-chain branching in polymers. , 2021, , 281-304.		2
4	Effects of Asymmetric Molecular Architecture on Chain Stretching and Dynamics in Miktoarm Star Copolymers. Macromolecules, 2021, 54, 183-194.	2.2	4
5	Assessing the Range of Validity of Current Tube Models through Analysis of a Comprehensive Set of Star–Linear 1,4-Polybutadiene Polymer Blends. Macromolecules, 2019, 52, 7831-7846.	2.2	6
6	Determining the Dilution Exponent for Entangled 1,4-Polybutadienes Using Blends of Near-Monodisperse Star with Unentangled, Low Molecular Weight Linear Polymers. Macromolecules, 2019, 52, 1757-1771.	2.2	8
7	All-acrylic superelastomers: facile synthesis and exceptional mechanical behavior. Polymer Chemistry, 2018, 9, 160-168.	1.9	18
8	Porous poly(ε-caprolactone) microspheres via UV photodegradation of block copolymers prepared by RAFT polymerization. Polymer, 2018, 158, 198-203.	1.8	8
9	Single-step process to improve the mechanical properties of carbon nanotube yarn. Beilstein Journal of Nanotechnology, 2018, 9, 545-554.	1.5	7
10	Impact of Molecular Architecture on Dynamics of Miktoarm Star Copolymers. Macromolecules, 2018, 51, 5401-5408.	2.2	5
11	All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties. Polymer Chemistry, 2017, 8, 5741-5748.	1.9	34
12	Polyacrylonitrile nanocomposite fibers from acrylonitrile-grafted carbon nanofibers. Composites Part B: Engineering, 2017, 130, 64-69.	5.9	16
13	Recent Developments in Carbon Fibers and Carbon Nanotube-Based Fibers: A Review. Polymer Reviews, 2017, 57, 339-368.	5.3	82
14	Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers, 2017, 9, 494.	2.0	298
15	Effect of Electron Beam and Gamma Rays on Carbon Nanotube Yarn Structure. Materials Research, 2017, 20, 386-392.	0.6	20
16	High Temperature Thermoplastic Elastomers Synthesized by Living Anionic Polymerization in Hydrocarbon Solvent at Room Temperature. Macromolecules, 2016, 49, 2646-2655.	2.2	39
17	Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns. Journal of Materials Science, 2016, 51, 10215-10228.	1.7	11
18	Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids. Macromolecules, 2016, 49, 4557-4570.	2.2	121

JIMMY MAYS

#	Article	IF	CITATIONS
19	Challenging Tube and Slip-Link Models: Predicting the Linear Rheology of Blends of Well-Characterized Star and Linear 1,4-Polybutadienes. Macromolecules, 2016, 49, 4964-4977.	2.2	34
20	Synthesis and Characterization of Graft Copolymers Poly(isoprene- <i>g</i> -styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization. Industrial & Engineering Chemistry Research, 2015, 54, 1292-1300.	1.8	24
21	All-Acrylic Multigraft Copolymers: Effect of Side Chain Molecular Weight and Volume Fraction on Mechanical Behavior. Industrial & Engineering Chemistry Research, 2015, 54, 9566-9576.	1.8	24
22	Schlenk Techniques for Anionic Polymerization. , 2015, , 3-18.		4
23	Design of superionic polymers—New insights from Walden plot analysis. Solid State Ionics, 2014, 262, 782-784.	1.3	54
24	Synthesis and Characterization of Comb and Centipede Multigraft Copolymers P <i>n</i> BA- <i>g</i> -PS with High Molecular Weight Using Miniemulsion Polymerization. Macromolecules, 2014, 47, 7284-7295.	2.2	30
25	Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 2014, 55, 4067-4076.	1.8	136
26	Structure and proton transport in proton exchange membranes based on cross-linked sulfonated poly (1, 3-cyclohexadiene) with varying local acid environment. Polymer, 2013, 54, 2299-2307.	1.8	7
27	Structure and Diffusion in Cross-Linked and Sulfonated Poly(1,3-cyclohexadiene)/Polyethylene Glycol-Based Proton Exchange Membranes. Journal of Physical Chemistry C, 2013, 117, 4901-4912.	1.5	13
28	Analytical Rheology of Asymmetric H-Shaped Model Polybutadiene Melts. Macromolecules, 2012, 45, 5744-5756.	2.2	13
29	Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes. Physical Review Letters, 2012, 108, 088303.	2.9	139
30	Morphologies of block copolymers composed of charged and neutral blocks. Soft Matter, 2012, 8, 3036.	1.2	95
31	Model Branched Polymers: Synthesis and Characterization of Asymmetric H-Shaped Polybutadienes. ACS Macro Letters, 2012, 1, 537-540.	2.3	18
32	Atomistic and Coarse-Grained Molecular Dynamics Simulation of a Cross-Linked Sulfonated Poly(1,3-cyclohexadiene)-Based Proton Exchange Membrane. Macromolecules, 2012, 45, 6669-6685.	2.2	21
33	Multi-scale models for cross-linked sulfonated poly (1, 3-cyclohexadiene) polymer. Polymer, 2012, 53, 1517-1528.	1.8	16
34	Asymmetrical self-assembly from fluorinated and sulfonated block copolymers in aqueous media. Soft Matter, 2011, 7, 7960.	1.2	19
35	Breakdown of Inverse Morphologies in Charged Diblock Copolymers. Journal of Physical Chemistry B, 2011, 115, 3330-3338.	1.2	20
36	Detecting Structural Polydispersity in Branched Polybutadienes. Macromolecules, 2011, 44, 208-214.	2.2	39

JIMMY MAYS

#	Article	IF	CITATIONS
37	Combined Synthesis, TGIC Characterization, and Rheological Measurement and Prediction of Symmetric H Polybutadienes and Their Blends with Linear and Star-Shaped Polybutadienes. Macromolecules, 2011, 44, 7799-7809.	2.2	59
38	Synthesis of well-defined multigraft copolymers. Polymer Chemistry, 2011, 2, 69-76.	1.9	64
39	Grafting Polymer Loops onto Functionalized Nanotubes: Monitoring Grafting and Loop Formation. Macromolecular Chemistry and Physics, 2011, 212, 465-477.	1.1	8
40	Multigraft copolymer superelastomers: Synthesis morphology, and properties. European Polymer Journal, 2011, 47, 560-568.	2.6	36
41	Controllable stacked disk morphologies of charged diblock copolymers. Chemical Physics Letters, 2010, 487, 272-278.	1.2	7
42	Polymer Loop Formation on a Functionalized Hard Surface: Quantitative Insight by Comparison of Experimental and Monte Carlo Simulation Results. Langmuir, 2010, 26, 202-209.	1.6	18
43	A Novel Reactive Processing Technique: Using Telechelic Polymers To Reactively Compatibilize Polymer Blends. ACS Applied Materials & Interfaces, 2009, 1, 2163-2173.	4.0	11
44	Synthesis and Dilute Solution Properties of Well-Defined H-Shaped Polybutadienes. Macromolecules, 2008, 41, 8225-8230.	2.2	25
45	Behavior of Cationic Surfactants in Poly(styrene sulfonate) Brushes. Industrial & Engineering Chemistry Research, 2008, 47, 6426-6433.	1.8	20
46	Architecturally Induced Multiresponsive Vesicles from Well-Defined Polypeptides. Formation of Gene Vehicles. Biomacromolecules, 2007, 8, 2173-2181.	2.6	140
47	The Role of Salt in Governing the Adsorption Mechanisms of Micelle-Forming Polyelectrolyte/Neutral Diblock Copolymers. Macromolecules, 2006, 39, 697-702.	2.2	10
48	Postadsorption Rearrangements of Block Copolymer Micelles at the Solid/Liquid Interface. Macromolecules, 2006, 39, 2262-2267.	2.2	22
49	Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 2006, 31, 1068-1132.	11.8	578
50	Synthesis and Evaluation of Novel Bifunctional Oligomer-based Composites for Dental Applications. Journal of Biomaterials Applications, 2006, 20, 221-236.	1.2	5
51	Adsorption Mechanisms of Charged, Amphiphilic Diblock Copolymers:Â The Role of Micellization and Surface Affinity. Macromolecules, 2005, 38, 5137-5143.	2.2	17
52	Synthesis of amino acid-based polymers via atom transfer radical polymerization in aqueous media at ambient temperature. Chemical Communications, 2005, , 1046.	2.2	45
53	Feature Article: Experimental Design and Molecular Modeling of Novel Graft Copolymers. Polymer News, 2004, 29, 302-310.	0.1	6
54	Synthesis and evaluation of HEMA-free glass–ionomer cements for dental applications. Dental Materials, 2004, 20, 470-478.	1.6	40

JIMMY MAYS

#	Article	IF	CITATIONS
55	Synthesis, formulation and evaluation of novel zinc-calcium phosphate-based adhesive resin composite cement. European Polymer Journal, 2004, 40, 1723-1731.	2.6	11
56	An amino acid-modified and non-HEMA containing glass-ionomer cement. Biomaterials, 2004, 25, 1825-1830.	5.7	53
57	In Situ Thickness Determination of Adsorbed Layers of Poly(2-Vinylpyridine)â^Polystyrene Diblock Copolymers by Ellipsometry. Macromolecules, 2004, 37, 905-911.	2.2	35
58	Understanding the Morphologies and Polymerization Mechanism of Homopolymer and Block Copolymer Brushes by Living Anionic Surface Initiated Polymerization. Materials Research Society Symposia Proceedings, 2002, 734, 361.	0.1	0
59	Polymer Brushes by Living Anionic Surface Initiated Polymerization on Flat Silicon (SiOx) and Gold Surfaces:Â Homopolymers and Block Copolymers. Langmuir, 2002, 18, 8672-8684.	1.6	116
60	Living Anionic Surface-Initiated Polymerization (LASIP) of Styrene from Clay Nanoparticles Using Surface Bound 1,1-Diphenylethylene (DPE) Initiators. Langmuir, 2002, 18, 4511-4518.	1.6	87
61	Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silica Nanoparticles. Langmuir, 2002, 18, 3324-3331.	1.6	152
62	Surface-Iniatiated Anionic Polymerization: Tethered Polymer Brushes on Silicate Flat Surfaces. ACS Symposium Series, 2001, , 39-55.	0.5	2
63	Living Anionic Surface Initiated Polymerization (SIP) of Styrene from Clay Surfaces. Chemistry of Materials, 2001, 13, 2465-2467.	3.2	108
64	Hydrodynamic properties of model 3-miktoarm star copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1925-1932.	2.4	56
65	Molecular characterization of poly(2-methyl-1,3-pentadiene) and its hydrogenated derivative, atactic polypropylene. Macromolecules, 1985, 18, 2560-2566.	2.2	58
66	Properties and chain flexibility of poly(dl-isobornyl methacrylate). Journal of Polymer Science, Polymer Physics Edition, 1984, 22, 1745-1751.	1.0	28
67	Characteristic ratios of model polydienes and polyolefins. Macromolecules, 1984, 17, 2723-2728.	2.2	58
68	Thermoplastic Elastomers Based on Block, Graft, and Star Copolymers. , 0, , .		7