Anuradha Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Standing Photo-Crosslinked Hydrogel Construct: in vitro Microphysiological Vascular Model. Cells Tissues Organs, 2022, 211, 335-347.	1.3	Ο
2	Nanohydroxyapatite-Protein Interface in Composite Sintered Scaffold Influences Bone Regeneration in Rabbit Ulnar Segmental Defect. Journal of Materials Science: Materials in Medicine, 2022, 33, 36.	1.7	1
3	Surface modified NIR magnetic nanoprobes for theranostic applications Expert Opinion on Drug Delivery, 2021, 18, 399-408.	2.4	2
4	Tissue engineering approaches towards the regeneration of biomimetic scaffolds for age-related macular degeneration. Journal of Materials Chemistry B, 2021, 9, 5935-5953.	2.9	2
5	Reverse engineering of an anatomically equivalent nerve conduit. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 998-1011.	1.3	8
6	Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomaterials Science, 2021, 9, 1974-1994.	2.6	32
7	ECM-Mimetic Multiresponsive Nanobullets Targeted Against Metastasizing Circulating Tumor Clusters in Breast Cancer. Annals of Biomedical Engineering, 2020, 48, 568-581.	1.3	3
8	Clinical complications of biodegradable screws for ligament injuries. Materials Science and Engineering C, 2020, 109, 110423.	3.8	27
9	Nanofiber matrices of protein mimetic bioactive peptides for biomedical applications. , 2020, , 199-217.		2
10	Bruch's membrane pathology: A mechanistic perspective. European Journal of Ophthalmology, 2020, 30, 1195-1206.	0.7	15
11	Additive manufacturing of biodegradable porous orthopaedic screw. Bioactive Materials, 2020, 5, 458-467.	8.6	56
12	Marigold-like tyrosinase-embedded nanostructures—a nano-in-micro system. Dalton Transactions, 2020, 49, 11329-11335.	1.6	2
13	Peptide nanostructures on nanofibers for peripheral nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1059-1070.	1.3	13
14	Assessment of Tissue Constructs InÂVivo in Regenerative Engineering. , 2019, , 427-431.		0
15	Nanohybrids – cancer theranostics for tiny tumor clusters. Journal of Controlled Release, 2019, 299, 21-30.	4.8	10
16	Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials, 2018, 162, 82-98.	5.7	130
17	Responsive Nanomicellar Theranostic Cages for Metastatic Breast Cancer. Bioconjugate Chemistry, 2018, 29, 275-286.	1.8	27
18	Surface topography of polylactic acid nanofibrous mats: influence on blood compatibility. Journal of Materials Science: Materials in Medicine, 2018, 29, 145.	1.7	17

#	Article	IF	CITATIONS
19	Self-assembling peptide nanostructures on aligned poly(lactide-co-glycolide) nanofibers for the functional regeneration of sciatic nerve. Nanomedicine, 2017, 12, 219-235.	1.7	24
20	Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules, 2017, 18, 1-26.	2.6	185
21	Development of Porous Hydrogel Scaffolds with Multiple Cues for Liver Tissue Engineering. Regenerative Engineering and Translational Medicine, 2017, 3, 176-191.	1.6	8
22	Injectable glycosaminoglycan–protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration. Carbohydrate Polymers, 2017, 175, 63-74.	5.1	35
23	Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. Acta Biomaterialia, 2017, 49, 422-433.	4.1	57
24	Topographic Cue from Electrospun Scaffolds Regulate Myelin-Related Gene Expressions in Schwann Cells. Journal of Biomedical Nanotechnology, 2015, 11, 512-521.	0.5	33
25	Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnology Journal, 2015, 10, 96-108.	1.8	21
26	Phase-induced porous composite microspheres sintered scaffold with protein–mineral interface for bone tissue engineering. RSC Advances, 2015, 5, 22005-22014.	1.7	6
27	Development of nanotheranostics against metastatic breast cancer — A focus on the biology & mechanistic approaches. Biotechnology Advances, 2015, 33, 1897-1911.	6.0	17
28	<i>In Vivo</i> Biocompatibility of PLGA-Polyhexylthiophene Nanofiber Scaffolds in a Rat Model. BioMed Research International, 2013, 2013, 1-8.	0.9	38
29	Fabrication, Characterization and In Vitro Evaluation of Aligned PLGA–PCL Nanofibers for Neural Regeneration. Annals of Biomedical Engineering, 2012, 40, 2098-2110.	1.3	61
30	Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. Journal of Materials Science: Materials in Medicine, 2012, 23, 1797-1809.	1.7	53
31	Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnology Advances, 2012, 30, 742-752.	6.0	57
32	Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomedical Materials (Bristol), 2011, 6, 025004.	1.7	133
33	Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science, 2009, 16, 108.	2.6	488