Farshid Noorbakhsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11166264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A1 Adenosine Receptor Upregulation and Activation Attenuates Neuroinflammation and Demyelination in a Model of Multiple Sclerosis. Journal of Neuroscience, 2004, 24, 1521-1529.	1.7	297
2	Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Reviews Drug Discovery, 2012, 11, 69-86.	21.5	272
3	Impaired neurosteroid synthesis in multiple sclerosis. Brain, 2011, 134, 2703-2721.	3.7	192
4	Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Experimental Medicine, 2006, 203, 425-435.	4.2	145
5	CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. Journal of Controlled Release, 2017, 246, 46-59.	4.8	142
6	Neuroinflammation and Endoplasmic Reticulum Stress Are Coregulated by Crocin To Prevent Demyelination and Neurodegeneration. Journal of Immunology, 2011, 187, 4788-4799.	0.4	125
7	Proteinase-activated receptors in the nervous system. Nature Reviews Neuroscience, 2003, 4, 981-990.	4.9	123
8	Acute Disseminated Encephalomyelitis: Clinical and Pathogenesis Features. Neurologic Clinics, 2008, 26, 759-780.	0.8	95
9	MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Journal of Neuroinflammation, 2017, 14, 55.	3.1	95
10	Proteinase-Activated Receptor-2 Induction by Neuroinflammation Prevents Neuronal Death during HIV Infection. Journal of Immunology, 2005, 174, 7320-7329.	0.4	92
11	Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends in Neurosciences, 2009, 32, 88-100.	4.2	92
12	Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2019, 328, 50-59.	1.1	90
13	MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspaseâ€6 regulates astrocyte survival. FASEB Journal, 2010, 24, 1799-1812.	0.2	79
14	Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Frontiers in Cellular Neuroscience, 2014, 8, 134.	1.8	71
15	MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity, 2015, 48, 369-378.	1.2	63
16	MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Frontiers in Immunology, 2017, 8, 758.	2.2	60
17	HIVâ€1 viral protein R causes peripheral nervous system injury associated with <i>in vivo</i> neuropathic pain. FASEB Journal, 2010, 24, 4343-4353.	0.2	59
18	Early Life Exposure to Lipopolysaccharide Suppresses Experimental Autoimmune Encephalomyelitis by Promoting Tolerogenic Dendritic Cells and Regulatory T Cells. Journal of Immunology, 2009, 183, 298-309.	0.4	58

Farshid Noorbakhsh

#	Article	IF	CITATIONS
19	Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells. Journal of Experimental and Clinical Cancer Research, 2020, 39, 49.	3.5	57
20	Proteinase-Activated Receptor-2 Exerts Protective and Pathogenic Cell Type-Specific Effects in Alzheimer's Disease. Journal of Immunology, 2007, 179, 5493-5503.	0.4	53
21	MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biology, 2015, 36, 4203-4212.	0.8	46
22	CXCR3 activation by lentivirus infection suppresses neuronal autophagy: neuroprotective effects of antiretroviral therapy. FASEB Journal, 2009, 23, 2928-2941.	0.2	39
23	Neurosteroidâ€mediated regulation of brain innate immunity in HIV/AIDS: DHEAâ€S suppresses neurovirulence. FASEB Journal, 2013, 27, 725-737.	0.2	39
24	The Effect of Melatonin on Behavioral, Molecular, and Histopathological Changes in Cuprizone Model of Demyelination. Molecular Neurobiology, 2016, 53, 4675-4684.	1.9	39
25	RON-regulated innate immunity is protective in an animal model of multiple sclerosis. Annals of Neurology, 2005, 57, 883-895.	2.8	38
26	Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Clia, 2017, 65, 1590-1606.	2.5	36
27	Zika Virus Infection, Basic and Clinical Aspects: A Review Article. Iranian Journal of Public Health, 2019, 48, 20-31.	0.3	34
28	Inhibition of MicroRNAâ€21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. International Journal of Dermatology, 2016, 55, 1259-1267.	0.5	32
29	MicroRNA-21 and microRNA-29a modulate the expression of collagen in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity, 2019, 52, 108-116.	1.2	28
30	Interactions between human immunodeficiency virus (HIV)-1 Vpr expression and innate immunity influence neurovirulence. Retrovirology, 2011, 8, 44.	0.9	27
31	MicroRNA-150 targets PU.1 and regulates macrophage differentiation and function in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2018, 323, 167-174.	1.1	26
32	Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. Journal of NeuroVirology, 2007, 13, 173-184.	1.0	25
33	Protective Effect of a cAMP Analogue on Behavioral Deficits and Neuropathological Changes in Cuprizone Model of Demyelination. Molecular Neurobiology, 2015, 52, 130-141.	1.9	23
34	Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation. Biological Chemistry, 2018, 399, 1023-1039.	1.2	18
35	Reproducible and Reliable Real-time PCR Assay to Measure Mature Form of miR-141. Applied Immunohistochemistry and Molecular Morphology, 2016, 24, 138-143.	0.6	17
36	MicroRNA-92a Drives Th1 Responses in the Experimental Autoimmune Encephalomyelitis. Inflammation, 2019, 42, 235-245.	1.7	17

#	Article	IF	CITATIONS
37	miR-181 interacts with signaling adaptor molecule DENN/MADD and enhances TNF-induced cell death. PLoS ONE, 2017, 12, e0174368.	1.1	14
38	The Human Microbiome in Multiple Sclerosis: Pathogenic or Protective Constituents?. Canadian Journal of Neurological Sciences, 2010, 37, S24-S33.	0.3	11
39	Lentivirus envelope protein exerts differential neuropathogenic effects depending on the site of expression and target cell. Virology, 2006, 348, 260-276.	1.1	10
40	NeuroAIDS: a watershed for mental health and nervous system disorders. Journal of Psychiatry and Neuroscience, 2009, 34, 83-5.	1.4	10
41	Application of "Omics―Technologies for Diagnosis and Pathogenesis of Neurological Infections. Current Neurology and Neuroscience Reports, 2015, 15, 58.	2.0	4
42	Proteinase-Activated Receptors in The Nervous System: Physiological and Pathological Aspects. The Neuroscience Journal of Shefaye Khatam, 2018, 6, 69-78.	0.4	0