
Hiroki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11165972/publications.pdf Version: 2024-02-01

HIDORI SAITO

#	Article	IF	CITATIONS
1	Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature, 2009, 461, 1130-1134.	27.8	443
2	Ef7 Encodes an ELF3-like Protein and Promotes Rice Flowering by Negatively Regulating the Floral Repressor Gene Ghd7 under Both Short- and Long-Day Conditions. Plant and Cell Physiology, 2012, 53, 717-728.	3.1	113
3	QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Science, 2009, 176, 514-521.	3.6	75
4	Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1955-E1962.	7.1	64
5	High Potential of a Transposon mPing as a Marker System in japonica x japonica Cross in Rice. DNA Research, 2009, 16, 131-140.	3.4	52
6	Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (OryzaÂsativa L.). Theoretical and Applied Genetics, 2009, 119, 315-323.	3.6	50
7	Se14, Encoding a JmjC Domain-Containing Protein, Plays Key Roles in Long-Day Suppression of Rice Flowering through the Demethylation of H3K4me3 of RFT1. PLoS ONE, 2014, 9, e96064.	2.5	45
8	Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice. Molecular Breeding, 2013, 32, 505-516.	2.1	43
9	Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theoretical and Applied Genetics, 2019, 132, 65-80.	3.6	43
10	Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theoretical and Applied Genetics, 2009, 119, 675-684.	3.6	35
11	Complete loss of photoperiodic response in the rice mutant line X61 is caused by deficiency of phytochrome chromophore biosynthesis gene. Theoretical and Applied Genetics, 2011, 122, 109-118.	3.6	25
12	The parthenocarpic gene Pat-k is generated by a natural mutation of SIAGL6 affecting fruit development in tomato (Solanum lycopersicum L.). BMC Plant Biology, 2018, 18, 72.	3.6	25
13	The effects of the photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice. Molecular Breeding, 2014, 33, 813-819.	2.1	20
14	Wide genetic variation in phenolic compound content of seed coats among black soybean cultivars. Breeding Science, 2014, 64, 409-415.	1.9	18
15	The early flowering trait of an emmer wheat accession (Triticum turgidum L. ssp. dicoccum) is associated with the cis-element of the Vrn-A3 locus. Theoretical and Applied Genetics, 2018, 131, 2037-2053.	3.6	18
16	The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Scientific Reports, 2015, 5, 7709.	3.3	16
17	<i>mPing</i> : The bursting transposon. Breeding Science, 2014, 64, 109-114.	1.9	11
18	Detection of novel QTLs <i>qDTH4.5</i> and <i>qDTH6.3</i> , which confer late heading under short-day conditions, by SSR marker-based and QTL-seq analysis. Breeding Science, 2017, 67. 101-109.	1.9	11

ΗΙROKI SAITO

#	Article	IF	CITATIONS
19	Loss-of-Function of a Ubiquitin-Related Modifier Promotes the Mobilization of the Active MITE mPing. Molecular Plant, 2013, 6, 790-801.	8.3	10
20	Allelic Differentiation at the E1/Ghd7 Locus Has Allowed Expansion of Rice Cultivation Area. Plants, 2019, 8, 550.	3.5	9
21	Genomic Basis of Transcriptome Dynamics in Rice under Field Conditions. Plant and Cell Physiology, 2021, 62, 1436-1445.	3.1	9
22	Mobilization of the active transposon mPing in interspecific hybrid rice between Oryza sativa and O. glaberrima. Euphytica, 2013, 192, 17-24.	1.2	7
23	Heading Time Genes Responsible for the Regional Adaptability of 'Tongil-type Short-culmed Rice Cultivars' Developed in Korea. Breeding Science, 2007, 57, 135-143.	1.9	3
24	The active miniature inverted-repeat transposable element mPing posttranscriptionally produces new transcriptional variants in the rice genome. Molecular Breeding, 2015, 35, 1.	2.1	2
25	Identification and functional analysis of flowering time genes that enable stable rice production by conferring regional adaptability on rice varieties. Ikushugaku Kenkyu, 2018, 20, 174-179.	0.3	1