
Bipin Gaihre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11164787/publications.pdf Version: 2024-02-01

RIDIN CATHDE

#	Article	IF	CITATIONS
1	Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair. ACS Nano, 2022, 16, 2741-2755.	7.3	21
2	Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials, 2022, 284, 121507.	5.7	14
3	Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. Polymer Reviews, 2021, 61, 319-356.	5.3	14
4	<scp>3D</scp> bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 6-17.	2.1	22
5	2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomaterials Science, 2021, 9, 2768-2803.	2.6	29
6	Mesenchymal stem cell spheroids incorporated with collagen and black phosphorus promote osteogenesis of biodegradable hydrogels. Materials Science and Engineering C, 2021, 121, 111812.	3.8	15
7	Bifunctional hydrogel for potential vascularized bone tissue regeneration. Materials Science and Engineering C, 2021, 124, 112075.	3.8	13
8	Evaluation of the optimal dosage of BMP-9 through the comparison of bone regeneration induced by BMP-9 versus BMP-2 using an injectable microparticle embedded thermosensitive polymeric carrier in a rat cranial defect model. Materials Science and Engineering C, 2021, 127, 112252.	3.8	2
9	Spatial and uniform deposition of cell-laden constructs on 3D printed composite phosphorylated hydrogels for improved osteoblast responses. Journal of Materials Science, 2021, 56, 17768-17784.	1.7	4
10	SDF-1α/OPF/BP Composites Enhance the Migrating and Osteogenic Abilities of Mesenchymal Stem Cells. Stem Cells International, 2021, 2021, 1-12.	1.2	4
11	Injectable catalyst-free "click―organic-inorganic nanohybrid (click-ON) cement for minimally invasive in vivo bone repair. Biomaterials, 2021, 276, 121014.	5.7	18
12	Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 4653-4665.	2.6	46
13	3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomaterialia, 2020, 111, 129-140.	4.1	69
14	Thermoresponsive Injectable Microparticle–Gel Composites with Recombinant BMP-9 and VEGF Enhance Bone Formation in Rats. ACS Biomaterials Science and Engineering, 2019, 5, 4587-4600.	2.6	20
15	Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair. Colloids and Surfaces B: Biointerfaces, 2018, 165, 158-164.	2.5	12
16	Injectable nanosilica–chitosan microparticles for bone regeneration applications. Journal of Biomaterials Applications, 2018, 32, 813-825.	1.2	19
17	Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. Materials Science and Engineering C, 2018, 91, 330-339.	3.8	46
18	Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. Journal of Functional Biomaterials, 2017, 8, 49.	1.8	53

#	Article	IF	CITATIONS
19	Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Materials Science and Engineering C, 2016, 69, 733-743.	3.8	62