Muhammad Bilal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11164324/publications.pdf

Version: 2024-02-01

270111 488211 3,042 31 25 31 citations h-index g-index papers 31 31 31 1894 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 2021, 122, 103441.	4.8	163
2	Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 2021, 44, 103299.	1.6	190
3	Big Data Analytics System for Costing Power Transmission Projects. Journal of Construction Engineering and Management - ASCE, 2020, 146, 05019017.	2.0	14
4	Design for deconstruction using a circular economy approach: barriers and strategies for improvement. Production Planning and Control, 2020, 31, 829-840.	5.8	72
5	Big data for Design Options Repository: Towards a DFMA approach for offsite construction. Automation in Construction, 2020, 120, 103388.	4.8	43
6	Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 2020, 32, 101827.	1.6	165
7	Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations. Safety Science, 2020, 125, 104656.	2.6	27
8	A Big Data Analytics Approach for Construction Firms Failure Prediction Models. IEEE Transactions on Engineering Management, 2019, 66, 689-698.	2.4	28
9	Investigating profitability performance of construction projects using big data: A project analytics approach. Journal of Building Engineering, 2019, 26, 100850.	1.6	37
10	Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy. Journal of Cleaner Production, 2019, 223, 386-396.	4.6	121
11	Design optimisation using convex programming: Towards waste-efficient building designs. Journal of Building Engineering, 2019, 23, 231-240.	1.6	6
12	Reusability analytics tool for end-of-life assessment of building materials in a circular economy. World Journal of Science Technology and Sustainable Development, 2019, 16, 40-55.	2.0	21
13	Designing out construction waste using BIM technology: Stakeholders' expectations for industry deployment. Journal of Cleaner Production, 2018, 180, 375-385.	4.6	159
14	A framework for big data analytics approach to failure prediction of construction firms. Applied Computing and Informatics, 2018, 16, 207-222.	3.7	11
15	Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems With Applications, 2018, 94, 164-184.	4.4	185
16	Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resources, Conservation and Recycling, 2018, 129, 175-186.	5.3	232
17	Critical factors for insolvency prediction: towards a theoretical model for the construction industry. International Journal of Construction Management, 2017, 17, 25-49.	2.2	23
18	Optimising material procurement for construction waste minimization: An exploration of success factors. Sustainable Materials and Technologies, 2017, 11, 38-46.	1.7	44

#	Article	IF	CITATIONS
19	Attributes of design for construction waste minimization: A case study of waste-to-energy project. Renewable and Sustainable Energy Reviews, 2017, 73, 1333-1341.	8.2	57
20	BIM-based deconstruction tool: Towards essential functionalities. International Journal of Sustainable Built Environment, 2017, 6, 260-271.	3.2	65
21	Critical management practices influencing on-site waste minimization in construction projects. Waste Management, 2017, 59, 330-339.	3.7	118
22	Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills. Waste Management, 2017, 60, 3-13.	3.7	139
23	Evaluation criteria for construction waste management tools: towards a holistic BIM framework. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 3-21.	1.0	38
24	Methodological approach of construction business failure prediction studies: a review. Construction Management and Economics, 2016, 34, 808-842.	1.8	16
25	Competency-based measures for designing out construction waste: task and contextual attributes. Engineering, Construction and Architectural Management, 2016, 23, 464-490.	1.8	29
26	Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics, 2016, 30, 500-521.	4.0	428
27	Big data architecture for construction waste analytics (CWA): A conceptual framework. Journal of Building Engineering, 2016, 6, 144-156.	1.6	130
28	Reducing waste to landfill: A need for cultural change in the UK construction industry. Journal of Building Engineering, 2016, 5, 185-193.	1.6	106
29	Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS). Resources, Conservation and Recycling, 2015, 105, 167-176.	5.3	163
30	Analysis of critical features and evaluation of BIM software: towards a plug-in for construction waste minimization using big data. International Journal of Sustainable Building Technology and Urban Development, 2015, 6, 211-228.	1.0	54
31	Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements. Resources, Conservation and Recycling, 2015, 102, 101-112.	5.3	158