Baba Musta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11164199/publications.pdf Version: 2024-02-01

RARA MUSTA

#	Article	IF	CITATIONS
1	Distance impacts toxic metals pollution in mining affected river sediments. Environmental Research, 2022, 214, 113757.	7.5	8
2	Synthesis of Silica-Supported Hydroxamic Ligand for Removal of Metals Ions from Water. Journal of Nanoscience and Nanotechnology, 2021, 21, 1570-1577.	0.9	4
3	Highly Active Cellulose-Supported Poly(hydroxamic acid)–Cu(II) Complex for Ullmann Etherification. ACS Omega, 2021, 6, 6766-6779.	3.5	9
4	Heavy Metals Removal from Electroplating Wastewater by Waste Fiber-Based Poly(amidoxime) Ligand. Water (Switzerland), 2021, 13, 1260.	2.7	19
5	Waste Fiber-Based Poly(hydroxamic acid) Ligand for Toxic Metals Removal from Industrial Wastewater. Polymers, 2021, 13, 1486.	4.5	5
6	Bio-heterogeneous Cu(0)NC@PHA for n-aryl/alkylation at room temperature. Polyhedron, 2021, 206, 115310.	2.2	1
7	Genomic data of two Bacillus and two Pseudomonas strains isolated from the acid mine drainage site at Mamut Copper Mine, Ranau, Malaysia. Data in Brief, 2020, 33, 106486.	1.0	0
8	Polymer Ligands Derived from Jute Fiber for Heavy Metal Removal from Electroplating Wastewater. Polymers, 2020, 12, 2521.	4.5	19
9	Poly(amidoxime) ligand derived from waste palm fiber for the removal of heavy metals from electroplating wastewater. Environmental Science and Pollution Research, 2020, 27, 34541-34556.	5.3	28
10	Kenaf cellulose-based poly(amidoxime) ligand for adsorption of rare earth ions. Rare Metals, 2019, 38, 259-269.	7.1	29
11	Synthesis of Sawdustâ€based Poly(amidoxime) Ligand for Heavy Metals Removal from Wastewater. ChemistrySelect, 2019, 4, 2991-3001.	1.5	15
12	Synthesis of Silica Gel Supported Amidoxime Ligand for Adsorption of Copper and Iron from Aqueous Media. Asian Journal of Chemistry, 2019, 31, 3035-3040.	0.3	1
13	Adaptive Strategies of Bacillus thuringiensis Isolated from Acid Mine Drainage Site in Sabah, Malaysia. Indian Journal of Microbiology, 2018, 58, 165-173.	2.7	7
14	Adsorption of rare earth metals from water using a kenaf cellulose-based poly(hydroxamic acid) ligand. Journal of Molecular Liquids, 2017, 243, 616-623.	4.9	55
15	Hydrogeochemical Study on Carbonate Aquifer Around FELDA Sahabat, Lahad Datu, Sabah, Malaysia. Advanced Science Letters, 2017, 23, 1314-1319.	0.2	0
16	Synthesis of poly(hydroxamic acid) ligand from polymer grafted corn-cob cellulose for transition metals extraction. Polymers for Advanced Technologies, 2016, 27, 1625-1636.	3.2	13
17	Synthesis of poly(hydroxamic acid) ligand from polymer grafted khaya cellulose for transition metals extraction. Fibers and Polymers, 2016, 17, 521-532.	2.1	22
18	Synthesis of tapioca cellulose-based poly(hydroxamic acid) ligand for heavy metals removal from water. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 515-522.	2.2	17

Baba Musta

0

#	Article	IF	CITATIONS
19	Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental Monitoring and Assessment, 2015, 187, 4190.	2.7	33
20	Geochemical processes, evidence and thermodynamic behavior of dissolved and precipitated carbonate minerals in a modern seawater/freshwater mixing zone of a small tropical island. Applied Geochemistry, 2013, 29, 13-31.	3.0	14
21	Synthesis and characterization of poly(hydroxamic acid)–poly(amidoxime) chelating ligands from polymerâ€grafted acacia cellulose. Journal of Applied Polymer Science, 2012, 124, 4443-4451.	2.6	7
22	Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. Journal of Hydrology, 2012, 432-433, 26-42.	5.4	66
23	Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia. Natural Resources Research, 2011, 20, 45-56.	4.7	10

24 Geochemistry of Kalabakan soils., 2011, , .