Georgina K Such

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11163857/publications.pdf

Version: 2024-02-01

66343 110387 6,008 63 42 64 citations h-index g-index papers 67 67 67 7530 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Understanding the Biological Interactions of pH wellable Nanoparticles. Macromolecular Bioscience, 2022, 22, e2100445.	4.1	9
2	Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3653-3661.	8.0	19
3	Understanding the Polymer Rearrangement of pH-Responsive Nanoparticles. Australian Journal of Chemistry, 2021, 74, 514.	0.9	1
4	Multicompartment Polymeric Nanocarriers for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e2000298.	3.9	19
5	Understanding Cell Interactions Using Modular Nanoparticle Libraries. Australian Journal of Chemistry, 2019, 72, 595.	0.9	3
6	pHâ€Responsive Polymer Nanoparticles for Drug Delivery. Macromolecular Rapid Communications, 2019, 40, e1800917.	3.9	318
7	Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine, 2019, 14, 215-223.	3.3	63
8	The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry, 2019, 30, 263-272.	3.6	380
9	The potential of nanoparticle vaccines as a treatment for cancer. Molecular Immunology, 2018, 98, 2-7.	2.2	27
10	Controlling Endosomal Escape Using pH-Responsive Nanoparticles with Tunable Disassembly. ACS Applied Nano Materials, 2018, 1, 3164-3173.	5.0	36
11	Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1452.	6.1	185
12	Probing Endosomal Escape Using pHlexi Nanoparticles. Macromolecular Bioscience, 2017, 17, 1600248.	4.1	29
13	Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay. Pharmaceutical Research, 2016, 33, 2421-2432.	3.5	22
14	HD Flow Cytometry: An Improved Way to Quantify Cellular Interactions with Nanoparticles. Advanced Healthcare Materials, 2016, 5, 2333-2338.	7.6	5
15	Multifunctional Thrombinâ€Activatable Polymer Capsules for Specific Targeting to Activated Platelets. Advanced Materials, 2015, 27, 5153-5157.	21.0	73
16	Self-assembling dual component nanoparticles with endosomal escape capability. Soft Matter, 2015, 11, 2993-3002.	2.7	48
17	Interfacing Materials Science and Biology for Drug Carrier Design. Advanced Materials, 2015, 27, 2278-2297.	21.0	175
18	Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nature Protocols, 2015, 10, 90-105.	12.0	45

#	Article	IF	Citations
19	Endocytic Capsule Sensors for Probing Cellular Internalization. Advanced Healthcare Materials, 2014, 3, 1551-1554.	7.6	15
20	Endocytic pHâ€Triggered Degradation of Nanoengineered Multilayer Capsules. Advanced Materials, 2014, 26, 1901-1905.	21.0	60
21	Engineering Enzymeâ€Cleavable Hybrid Click Capsules with a pHâ€Sheddable Coating for Intracellular Degradation. Small, 2014, 10, 4080-4086.	10.0	19
22	Peptide‶unable Drug Cytotoxicity via One‧tep Assembled Polymer Nanoparticles. Advanced Materials, 2014, 26, 2398-2402.	21.0	44
23	Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 2784-2792.	Td (metha	acrylate)/Po 7
24	Mechanically Tunable, Selfâ€Adjuvanting Nanoengineered Polypeptide Particles. Advanced Materials, 2013, 25, 3468-3472.	21.0	84
25	Design of Degradable Click Delivery Systems. Macromolecular Rapid Communications, 2013, 34, 894-902.	3.9	13
26	Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules, 2012, 13, 2225-2228.	5.4	298
27	Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules. ACS Nano, 2012, 6, 6667-6674.	14.6	81
28	Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano, 2012, 6, 10186-10194.	14.6	49
29	Engineering Particles for Therapeutic Delivery: Prospects and Challenges. ACS Nano, 2012, 6, 3663-3669.	14.6	160
30	Photoinitiated Alkyne–Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels. Biomacromolecules, 2012, 13, 889-895.	5.4	90
31	Bioâ€Click Chemistry: Enzymatic Functionalization of PEGylated Capsules for Targeting Applications. Angewandte Chemie - International Edition, 2012, 51, 7132-7136.	13.8	72
32	Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization. Journal of Membrane Science, 2012, 409-410, 9-15.	8.2	40
33	Synthesis and functionalization of nanoengineered materials using click chemistry. Progress in Polymer Science, 2012, 37, 985-1003.	24.7	97
34	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. Chemical Communications, 2011, 47, 12601.	4.1	46
35	Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules, 2011, 44, 1194-1202.	4.8	40
36	Modular Assembly of Layer-by-Layer Capsules with Tailored Degradation Profiles. Langmuir, 2011, 27, 1275-1280.	3.5	44

#	Article	lF	Citations
37	Toward Therapeutic Delivery with Layer-by-Layer Engineered Particles. ACS Nano, 2011, 5, 4252-4257.	14.6	112
38	Dopamine-Mediated Continuous Assembly of Biodegradable Capsules. Chemistry of Materials, 2011, 23, 3141-3143.	6.7	119
39	Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chemical Society Reviews, 2011, 40, 19-29.	38.1	327
40	Assembly and Degradation of Lowâ€Fouling Clickâ€Functionalized Poly(ethylene glycol)â€Based Multilayer Films and Capsules. Small, 2011, 7, 1075-1085.	10.0	55
41	Polymersome‣oaded Capsules for Controlled Release of DNA. Small, 2011, 7, 2109-2119.	10.0	105
42	Nanoengineered Films via Surfaceâ€Confined Continuous Assembly of Polymers. Small, 2011, 7, 2863-2867.	10.0	43
43	Chargeâ€Shifting Click Capsules with Dualâ€Responsive Cargo Release Mechanisms. Advanced Materials, 2011, 23, H273-7.	21.0	101
44	Challenges facing colloidal delivery systems: From synthesis to the clinic. Current Opinion in Colloid and Interface Science, 2011, 16, 171-181.	7.4	94
45	Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers. Biomaterials, 2011, 32, 6277-6284.	11.4	47
46	Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules. Advanced Materials, 2010, 22, 5398-5403.	21.0	85
47	Triggering Release of Encapsulated Cargo. Angewandte Chemie - International Edition, 2010, 49, 2664-2666.	13.8	91
48	Reaction Vessels Assembled by the Sequential Adsorption of Polymers. Advances in Polymer Science, $2010, 155-179$.	0.8	2
49	Biodegradable Click Capsules with Engineered Drug-Loaded Multilayers. ACS Nano, 2010, 4, 1653-1663.	14.6	181
50	Surface "Click―Chemistry on Brominated Plasma Polymer Thin Films. Langmuir, 2010, 26, 3388-3393.	3.5	48
51	Targeting of Cancer Cells Using Click-Functionalized Polymer Capsules. Journal of the American Chemical Society, 2010, 132, 15881-15883.	13.7	157
52	Fabrication of asymmetric "Janus―particles via plasma polymerization. Chemical Communications, 2010, 46, 5121.	4.1	48
53	Clickâ€Engineered, Bioresponsive, Drugâ€Loaded PEG Spheres. Advanced Materials, 2009, 21, 4348-4352.	21.0	34
54	Peptideâ€Functionalized, Lowâ€Biofouling Click Multilayers for Promoting Cell Adhesion and Growth. Small, 2009, 5, 444-448.	10.0	53

#	Article	IF	CITATIONS
55	Low-Fouling Poly(<i>N</i> -vinyl pyrrolidone) Capsules with Engineered Degradable Properties. Biomacromolecules, 2009, 10, 2839-2846.	5.4	100
56	Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules. Biomacromolecules, 2008, 9, 3389-3396.	5.4	118
57	Ultrathin, Responsive Polymer Click Capsules. Nano Letters, 2007, 7, 1706-1710.	9.1	191
58	Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chemical Society Reviews, 2007, 36, 707.	38.1	425
59	The Use of Block Copolymers to Systematically Modify Photochromic Behavior. Macromolecules, 2006, 39, 9562-9570.	4.8	42
60	Rapid Photochromic Switching in a Rigid Polymer Matrix Using Living Radical Polymerization. Macromolecules, 2006, 39, 1391-1396.	4.8	73
61	Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society, 2006, 128, 9318-9319.	13.7	356
62	The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nature Materials, 2005, 4, 249-253.	27.5	226
63	Research Trends in Photochromism: Control of Photochromism in Rigid Polymer Matrices and other Advances. Australian Journal of Chemistry, 2005, 58, 825.	0.9	33