Georgina K Such

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11163857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chemical Society Reviews, 2007, 36, 707.	38.1	425
2	The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry, 2019, 30, 263-272.	3.6	380
3	Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society, 2006, 128, 9318-9319.	13.7	356
4	Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chemical Society Reviews, 2011, 40, 19-29.	38.1	327
5	pHâ€Responsive Polymer Nanoparticles for Drug Delivery. Macromolecular Rapid Communications, 2019, 40, e1800917.	3.9	318
6	Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules, 2012, 13, 2225-2228.	5.4	298
7	The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nature Materials, 2005, 4, 249-253.	27.5	226
8	Ultrathin, Responsive Polymer Click Capsules. Nano Letters, 2007, 7, 1706-1710.	9.1	191
9	Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1452.	6.1	185
10	Biodegradable Click Capsules with Engineered Drug-Loaded Multilayers. ACS Nano, 2010, 4, 1653-1663.	14.6	181
11	Interfacing Materials Science and Biology for Drug Carrier Design. Advanced Materials, 2015, 27, 2278-2297.	21.0	175
12	Engineering Particles for Therapeutic Delivery: Prospects and Challenges. ACS Nano, 2012, 6, 3663-3669.	14.6	160
13	Targeting of Cancer Cells Using Click-Functionalized Polymer Capsules. Journal of the American Chemical Society, 2010, 132, 15881-15883.	13.7	157
14	Dopamine-Mediated Continuous Assembly of Biodegradable Capsules. Chemistry of Materials, 2011, 23, 3141-3143.	6.7	119
15	Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules. Biomacromolecules, 2008, 9, 3389-3396.	5.4	118
16	Toward Therapeutic Delivery with Layer-by-Layer Engineered Particles. ACS Nano, 2011, 5, 4252-4257.	14.6	112
17	Polymersome‣oaded Capsules for Controlled Release of DNA. Small, 2011, 7, 2109-2119.	10.0	105
18	Charge‧hifting Click Capsules with Dualâ€Responsive Cargo Release Mechanisms. Advanced Materials, 2011, 23, H273-7.	21.0	101

GEORGINA K SUCH

#	Article	IF	CITATIONS
19	Low-Fouling Poly(<i>N</i> -vinyl pyrrolidone) Capsules with Engineered Degradable Properties. Biomacromolecules, 2009, 10, 2839-2846.	5.4	100
20	Synthesis and functionalization of nanoengineered materials using click chemistry. Progress in Polymer Science, 2012, 37, 985-1003.	24.7	97
21	Challenges facing colloidal delivery systems: From synthesis to the clinic. Current Opinion in Colloid and Interface Science, 2011, 16, 171-181.	7.4	94
22	Triggering Release of Encapsulated Cargo. Angewandte Chemie - International Edition, 2010, 49, 2664-2666.	13.8	91
23	Photoinitiated Alkyne–Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels. Biomacromolecules, 2012, 13, 889-895.	5.4	90
24	Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules. Advanced Materials, 2010, 22, 5398-5403.	21.0	85
25	Mechanically Tunable, Selfâ€Adjuvanting Nanoengineered Polypeptide Particles. Advanced Materials, 2013, 25, 3468-3472.	21.0	84
26	Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules. ACS Nano, 2012, 6, 6667-6674.	14.6	81
27	Rapid Photochromic Switching in a Rigid Polymer Matrix Using Living Radical Polymerization. Macromolecules, 2006, 39, 1391-1396.	4.8	73
28	Multifunctional Thrombinâ€Activatable Polymer Capsules for Specific Targeting to Activated Platelets. Advanced Materials, 2015, 27, 5153-5157.	21.0	73
29	Bio lick Chemistry: Enzymatic Functionalization of PEGylated Capsules for Targeting Applications. Angewandte Chemie - International Edition, 2012, 51, 7132-7136.	13.8	72
30	Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine, 2019, 14, 215-223.	3.3	63
31	Endocytic pHâ€Triggered Degradation of Nanoengineered Multilayer Capsules. Advanced Materials, 2014, 26, 1901-1905.	21.0	60
32	Assembly and Degradation of Lowâ€Fouling Clickâ€Functionalized Poly(ethylene glycol)â€Based Multilayer Films and Capsules. Small, 2011, 7, 1075-1085.	10.0	55
33	Peptideâ€Functionalized, Lowâ€Biofouling Click Multilayers for Promoting Cell Adhesion and Growth. Small, 2009, 5, 444-448.	10.0	53
34	Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano, 2012, 6, 10186-10194.	14.6	49
35	Surface "Click―Chemistry on Brominated Plasma Polymer Thin Films. Langmuir, 2010, 26, 3388-3393.	3.5	48
36	Fabrication of asymmetric "Janus―particles via plasma polymerization. Chemical Communications, 2010, 46, 5121.	4.1	48

GEORGINA K SUCH

#	Article	IF	CITATIONS
37	Self-assembling dual component nanoparticles with endosomal escape capability. Soft Matter, 2015, 11, 2993-3002.	2.7	48
38	Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers. Biomaterials, 2011, 32, 6277-6284.	11.4	47
39	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. Chemical Communications, 2011, 47, 12601.	4.1	46
40	Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nature Protocols, 2015, 10, 90-105.	12.0	45
41	Modular Assembly of Layer-by-Layer Capsules with Tailored Degradation Profiles. Langmuir, 2011, 27, 1275-1280.	3.5	44
42	Peptideâ€Tunable Drug Cytotoxicity via One‣tep Assembled Polymer Nanoparticles. Advanced Materials, 2014, 26, 2398-2402.	21.0	44
43	Nanoengineered Films via Surfaceâ€Confined Continuous Assembly of Polymers. Small, 2011, 7, 2863-2867.	10.0	43
44	The Use of Block Copolymers to Systematically Modify Photochromic Behavior. Macromolecules, 2006, 39, 9562-9570.	4.8	42
45	Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules, 2011, 44, 1194-1202.	4.8	40
46	Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization. Journal of Membrane Science, 2012, 409-410, 9-15.	8.2	40
47	Controlling Endosomal Escape Using pH-Responsive Nanoparticles with Tunable Disassembly. ACS Applied Nano Materials, 2018, 1, 3164-3173.	5.0	36
48	Clickâ€Engineered, Bioresponsive, Drug‣oaded PEG Spheres. Advanced Materials, 2009, 21, 4348-4352.	21.0	34
49	Research Trends in Photochromism: Control of Photochromism in Rigid Polymer Matrices and other Advances. Australian Journal of Chemistry, 2005, 58, 825.	0.9	33
50	Probing Endosomal Escape Using pHlexi Nanoparticles. Macromolecular Bioscience, 2017, 17, 1600248.	4.1	29
51	The potential of nanoparticle vaccines as a treatment for cancer. Molecular Immunology, 2018, 98, 2-7.	2.2	27
52	Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay. Pharmaceutical Research, 2016, 33, 2421-2432.	3.5	22
53	Engineering Enzymeâ€Cleavable Hybrid Click Capsules with a pHâ€Sheddable Coating for Intracellular Degradation. Small, 2014, 10, 4080-4086.	10.0	19
54	Multicompartment Polymeric Nanocarriers for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e2000298.	3.9	19

GEORGINA K SUCH

#	Article	IF	CITATIONS
55	Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay. ACS Applied Materials & Interfaces, 2022, 14, 3653-3661.	8.0	19
56	Endocytic Capsule Sensors for Probing Cellular Internalization. Advanced Healthcare Materials, 2014, 3, 1551-1554.	7.6	15
57	Design of Degradable Click Delivery Systems. Macromolecular Rapid Communications, 2013, 34, 894-902.	3.9	13
58	Understanding the Biological Interactions of pHâ€6wellable Nanoparticles. Macromolecular Bioscience, 2022, 22, e2100445.	4.1	9
59	Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 2784-2792.	Td (meth 5.4	acrylate)/Po 7
60	HD Flow Cytometry: An Improved Way to Quantify Cellular Interactions with Nanoparticles. Advanced Healthcare Materials, 2016, 5, 2333-2338.	7.6	5
61	Understanding Cell Interactions Using Modular Nanoparticle Libraries. Australian Journal of Chemistry, 2019, 72, 595.	0.9	3
62	Reaction Vessels Assembled by the Sequential Adsorption of Polymers. Advances in Polymer Science, 2010, , 155-179.	0.8	2
63	Understanding the Polymer Rearrangement of pH-Responsive Nanoparticles. Australian Journal of Chemistry, 2021, 74, 514.	0.9	1