List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11162927/publications.pdf Version: 2024-02-01

ΜΖΑΚΑΠΙΑΗ

#	Article	IF	CITATIONS
1	Effect of methane concentration on surface properties of cathodic cage plasma nitrocarburized AISI-304. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
2	Enhanced wear and corrosion resistance of AISI-304 steel by duplex cathodic cage plasma treatment. Surface and Coatings Technology, 2019, 375, 34-45.	4.8	37
3	Optical Emission and Langmuir Probe Diagnostic Measurements in DC Electrode Pulse Discharge in Nitrogen. High Temperature, 2019, 57, 821-831.	1.0	4
4	Non-intrusive measurement of electron, vibrational, rotational temperatures and active species concentration in N2-H2 cathodic cage plasma. Surface and Coatings Technology, 2018, 344, 233-243.	4.8	13
5	The effect of argon admixing on nitriding of plain carbon steel in N2 and N2-H2 plasma. Surface and Coatings Technology, 2018, 350, 48-56.	4.8	29
6	Evolution of plasma parameters in an Ar–N ₂ /He inductive plasma source with magnetic pole enhancement. Plasma Science and Technology, 2017, 19, 025402.	1.5	6
7	Comparative study of X-ray emission from plasma focus relative to different preionization schemes. Plasma Physics Reports, 2017, 43, 749-755.	0.9	6
8	Novel duplex cathodic cage plasma nitriding of non-alloyed steel using aluminum and austenite steel cathodic cages. Journal of Alloys and Compounds, 2017, 721, 307-311.	5.5	40
9	Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma. Plasma Physics Reports, 2017, 43, 588-593.	0.9	6
10	Improved surface properties of AISI-304 by novel duplex cathodic cage plasma nitriding. Materials Letters, 2017, 189, 213-216.	2.6	25
11	Effect of pulsed duty cycle control on tribological and corrosion properties of AISI-316 in cathodic cage plasma nitriding. Materials Research Express, 2017, 4, 116507.	1.6	14
12	Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding. Surface and Coatings Technology, 2017, 327, 59-65.	4.8	72
13	Influence of cathodic cage diameter on mechanical properties of plasma nitrided AISI 304 steel. Surface and Coatings Technology, 2017, 309, 738-748.	4.8	23
14	Effect of cathodic cage size on plasma nitriding of AISI 304 steel. Materials Letters, 2016, 181, 78-81.	2.6	41
15	Characterization of RF He-N2/Ar mixture plasma via Langmuir probe and optical emission spectroscopy techniques. Physics of Plasmas, 2016, 23, .	1.9	13
16	Influence of pulsed power supply parameters on active screen plasma nitriding. Surface and Coatings Technology, 2016, 300, 67-77.	4.8	34
17	Enhanced surface properties of plain carbon steel using plasma nitriding with austenitic steel cathodic cage. Materials and Design, 2016, 108, 745-753.	7.0	41
18	Evolution of plasma parameters in a He-N2/Ar magnetic pole enhanced inductive plasma source. Physics of Plasmas, 2016, 23, .	1.9	8

#	Article	IF	CITATIONS
19	Optical emission spectroscopy of 50â€Hz pulsed dc nitrogen–hydrogen plasma in the presence of active screen cage. Radiation Effects and Defects in Solids, 2016, 171, 384-397.	1.2	5
20	Correlation between excitation and electron temperature in 50 Hz pulsed Ar–O2 mixture plasma. Optik, 2016, 127, 3312-3315.	2.9	3
21	Optical emission spectroscopy of He–N ₂ mixture plasma. Radiation Effects and Defects in Solids, 2015, 170, 668-678.	1.2	4
22	Correlation of Neutron and X-ray Emission from Plasma Focus with Pre-ionization. Journal of Fusion Energy, 2014, 33, 720-725.	1.2	2
23	Investigation of plasma parameters in an active screen cage-pulsed dc plasma used for plasma nitriding. Radiation Effects and Defects in Solids, 2014, 169, 893-905.	1.2	13
24	Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy. Plasma Science and Technology, 2014, 16, 324-328.	1.5	5
25	DLC coating on stainless steel by pulsed methane discharge in repetitive plasma focus. Applied Surface Science, 2014, 303, 187-195.	6.1	21
26	Optimization Study of Pulsed DC Nitrogen-Hydrogen Plasma in the Presence of an Active Screen Cage. Plasma Science and Technology, 2014, 16, 460-464.	1.5	12
27	Deuteron Beam Source Based on Mather Type Plasma Focus. Journal of Fusion Energy, 2013, 32, 287-292.	1.2	10
28	Metrology of non-thermal capacitively coupled N2–Ar mixture plasma. Optics Communications, 2013, 296, 72-78.	2.1	19
29	Effect of preionization on the axial run-down velocity, focus amplitude and current sheath formation in 3.3ÅkJ small He plasma. Radiation Effects and Defects in Solids, 2013, 168, 10-17.	1.2	7
30	Effect of helium mixing on excitation temperature and nitrogen dissociation in inductively coupled plasma. Current Applied Physics, 2013, 13, 969-974.	2.4	17
31	Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment. Current Applied Physics, 2013, 13, 567-575.	2.4	21
32	Comparative study of electron temperature and excitation temperature in a magnetic pole enhanced-inductively coupled argon plasma. Current Applied Physics, 2013, 13, 1241-1246.	2.4	15
33	Validity of "sputtering and re-condensation―model in active screen cage plasma nitriding process. Applied Surface Science, 2013, 273, 173-178.	6.1	87
34	Characterization of 13.56 MHz RF Ne–N ₂ mixture plasma using intrusive and non-intrusive diagnostic techniques. Physica Scripta, 2013, 88, 045503.	2.5	13
35	A Report on H mode in Magnetic Pole Enhanced Inductively Coupled Nitrogen Plasmas. Contributions To Plasma Physics, 2013, 53, 492-502.	1.1	1
36	Investigation of magnetic-pole-enhanced inductively coupled nitrogen-argon plasmas. Journal of Applied Physics, 2012, 112, 063305.	2.5	3

#	Article	IF	CITATIONS
37	Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility. Physics of Plasmas, 2012, 19, .	1.9	9
38	Mode transition in magnetic pole enhanced inductively coupled argon plasmas. European Physical Journal D, 2012, 66, 1.	1.3	10
39	Effect of Excitation and Vibrational Temperature on the Dissociation of Nitrogen Molecules in Ar-N ₂ Mixture RF Discharge. Spectroscopy Letters, 2011, 44, 194-202.	1.0	13
40	Carburizing of zirconium using a low energy Mather type plasma focus. Surface and Coatings Technology, 2011, 205, 3012-3019.	4.8	30
41	Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz. Plasma Science and Technology, 2011, 13, 208-212.	1.5	4
42	Effect of preionization on soft x-ray emission and plasma dynamics in a small plasma focus system. Journal of Applied Physics, 2010, 107, 073301.	2.5	5
43	Deposition of zirconium carbonitride composite films using ion and electron beams emitted from plasma focus device. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2228-2234.	1.4	45
44	Vibrational Distribution of N ₂ (C, ν) State in a Pulsed-DC Generated N ₂ –Ar Glow Discharge. Spectroscopy Letters, 2010, 43, 259-265.	1.0	2
45	Tailoring a plasma focus as hard x-ray source for imaging. Applied Physics Letters, 2010, 96, 031501.	3.3	6
46	Effect of insulator sleeve material on the x-ray emission from a plasma focus device. Physics of Plasmas, 2010, 17, 092705.	1.9	5
47	Plasma nitriding of aluminium in a pulsed dc glow discharge of nitrogen. EPJ Applied Physics, 2010, 49, 21001.	0.7	17
48	Pulsed ion beam-assisted carburizing of titanium in methane discharge. Chinese Physics B, 2010, 19, 012801-10.	1.4	18
49	On the plume splitting of pulsed laser ablated Fe and Al plasmas. Physics of Plasmas, 2010, 17, .	1.9	38
50	Enhancing soft X-ray emission with depleted uranium in neon plasma focus. EPJ Applied Physics, 2009, 48, 21001.	0.7	5
51	Effect of anode shape on correlation of neutron emission with pinch energy for a 2.7kJ Mather-type plasma focus device. Journal of Applied Physics, 2009, 106, 023311.	2.5	9
52	Carbonitriding of silicon using plasma focus device. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 381-387.	2.1	20
53	Investigation of plume expansion dynamics and estimation of ablation parameters of laser ablated Fe plasma. Journal Physics D: Applied Physics, 2009, 42, 135504.	2.8	21
54	Soft X-ray emission from preionized He plasma in a 3.3ÅkJ Mather type plasma focus device. Plasma Devices and Operations, 2009, 17, 257-264.	0.6	1

#	Article	IF	CITATIONS
55	Synthesis of nano-crystalline zirconium aluminium oxynitride (ZrAlON) composite films by dense plasma Focus device. Applied Surface Science, 2009, 255, 6132-6140.	6.1	46
56	X-ray Emission from Plasma Focus: Envisioned by Various Competitive Detectors. Journal of Fusion Energy, 2009, 28, 124-129.	1.2	2
57	Dense plasma focus ion-based titanium nitride coating on titanium. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1911-1917.	1.4	32
58	Plasma focus assisted carburizing of aluminium. Thin Solid Films, 2009, 517, 6777-6783.	1.8	32
59	Diagnostic of 13.56 MHz RF sustained Ar–N ₂ plasma by optical emission spectroscopy. EPJ Applied Physics, 2009, 45, 11002.	0.7	41
60	Reply to Comment on †Determination of excitation temperature and vibrational temperature of the N ₂ (<i>C</i> ³ Î _u , ν′) state in Ne–N ₂ RF discharges Sources Science and Technology, 2009, 18, 018002.	â€.₩. Plas	mø
61	Synthesis of nanocrystalline multiphase titanium oxycarbide (TiCxOy) thin films by UNU/ICTP and NX2 plasma focus devices. Applied Physics A: Materials Science and Processing, 2008, 90, 669-677.	2.3	66
62	Effect of neon mixing on vibrational temperature of molecular nitrogen plasma generated at 13.56 MHz. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 1462-1468.	2.1	24
63	Langmuir probe characterization of nitrogen plasma for surface nitriding of AISI-4140 steel. Journal of Materials Processing Technology, 2008, 199, 363-368.	6.3	28
64	Nitridation of zirconium using energetic ions from plasma focus device. Thin Solid Films, 2008, 516, 8255-8263.	1.8	86
65	Langmuir probe and spectroscopic studies of RF generated helium-nitrogen mixture plasma. European Physical Journal D, 2008, 47, 395-402.	1.3	20
66	SYNTHESIS OF ZIRCONIUM OXYNITRIDE (ZrON) NANOCOMPOSITE FILMS ON ZIRCONIUM SUBSTRATE BY DENSE PLASMA FOCUS DEVICE. International Journal of Modern Physics B, 2008, 22, 3941-3955.	2.0	22
67	Plasma characterization for nitridation of aluminium alloy using 50ÂHz ac discharge. Plasma Devices and Operations, 2008, 16, 247-266.	0.6	7
68	Determination of excitation temperature and vibrational temperature of the N ₂ (<i>C</i> ³ l _u , l½â€²) state in Ne–N ₂ RF discharges Sources Science and Technology, 2008, 17, 025005.	. Blasma	17
69	Characterization of nonthermal Ne–N2 mixture radio frequency discharge. Journal of Applied Physics, 2008, 104, 123304.	2.5	8
70	Deposition of titanium nitride on AISI-304 in a plasma focus environment. EPJ Applied Physics, 2008, 42, 145-151.	0.7	6
71	Reliable Field Distortion Spark Gap for Plasma Focus. Plasma Science and Technology, 2007, 9, 504-507.	1.5	2
72	The correlation of x-ray emission with pinch energy in a 1.5 kJ plasma focus. Plasma Sources Science and Technology, 2007, 16, 587-592.	3.1	7

M ZAKAULLAH

#	Article	IF	CITATIONS
73	Glow Discharge Plasma Nitriding of AISI 304 Stainless Steel. Plasma Science and Technology, 2007, 9, 463-468.	1.5	9
74	Influence of the filling gas on plasma focus assisted diamondlike carbon coating at room temperature. Journal of Applied Physics, 2007, 101, 063307.	2.5	11
75	Optical actinometry of the N-atom density in nitrogen plasma. Plasma Devices and Operations, 2007, 15, 87-93.	0.6	5
76	Nitriding of titanium by using an ion beam delivered by a plasma focus. Journal Physics D: Applied Physics, 2007, 40, 769-777.	2.8	60
77	Optical emission spectroscopy of Ar–N2 mixture plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 361-371.	2.3	88
78	Deposition of diamond-like carbon film using dense plasma focus. Materials Chemistry and Physics, 2007, 103, 235-240.	4.0	35
79	STUDY OF PLASMA FOCUS AS A HARD X-RAY SOURCE FOR NON-DESTRUCTIVE TESTING. Modern Physics Letters B, 2007, 21, 1643-1650.	1.9	5
80	Deposition of Diamond-like Carbon Films using Graphite Sputtering in Neon Dense Plasma. Plasma Chemistry and Plasma Processing, 2007, 27, 127-139.	2.4	13
81	Measurement of the plasma electron density and temperature from Stark-broadened HÎ ² and HÎ ³ emission profiles. Plasma Devices and Operations, 2006, 14, 99-109.	0.6	2
82	Optical emission spectroscopy of the active species in nitrogen plasma. Plasma Devices and Operations, 2006, 14, 61-70.	0.6	8
83	The nitriding of aluminium by dense plasma focus. Plasma Sources Science and Technology, 2006, 15, 295-301.	3.1	28
84	Nitrogen ion implantation of silicon in dense plasma focus. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 219-224.	1.4	39
85	Comparative studies of X-ray emission from a plasma focus with different metal inserts at the anode tip. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 349, 236-244.	2.1	27
86	Amorphization of silicon by ion irradiation in dense plasma focus. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 150-154.	2.1	46
87	Effects of helium gas mixing on the production of active species in nitrogen plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 359, 499-503.	2.1	42
88	Hydrogen Balmer-β and Balmer-γ emission profiles in an abnormal glow region of hydrogen plasma. Vacuum, 2006, 80, 574-580.	3.5	15
89	Surface modification of AlFe1.8Zn0.8 alloy by using dense plasma focus. Vacuum, 2006, 81, 291-298.	3.5	38
90	Enhancement of X-ray emission in the side on direction in a Mather-type plasma focus. European Physical Journal D, 2006, 38, 337-341.	1.3	1

#	Article	IF	CITATIONS
91	Enhanced and reproducible X-ray emission in a low-energy plasma focus. Europhysics Letters, 2006, 73, 42-48.	2.0	18
92	Enhanced and reproducible neutron emission from a plasma focus with pre-ionization induced by depleted uranium (U238). Plasma Physics and Controlled Fusion, 2006, 48, 745-755.	2.1	37
93	The effect of pre-ionization by a shunt resistor on the reproducibility of plasma focus x-ray emission. Plasma Sources Science and Technology, 2006, 15, 314-321.	3.1	17
94	Reactive sputter-deposition of AlN films by dense plasma focus. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2122-2127.	2.1	5
95	Catalytic action of β source on x-ray emission from plasma focus. Review of Scientific Instruments, 2006, 77, 013504.	1.3	13
96	X-ray emission scaling law from a plasma focus with different anode tip materials (Cu, Mo, and W). Journal of Applied Physics, 2006, 100, 073301.	2.5	18
97	Depleted uranium (U23892) induced preionization for enhanced and reproducible x-ray emission from plasma focus. Applied Physics Letters, 2006, 89, 061503.	3.3	13
98	Co-deposition of titanium and iron nitrides on SS-321 by using plasma focus. Radiation Effects and Defects in Solids, 2006, 161, 121-129.	1.2	13
99	Spectroscopic optimization of abnormal glow conditions for plasma ion nitriding. EPJ Applied Physics, 2005, 32, 45-52.	0.7	18
100	X-rays emission from a compact diode energized by capacitor discharge. EPJ Applied Physics, 2005, 29, 91-97.	0.7	1
101	Optical Emission Spectroscopy of Abnormal Glow Region in Nitrogen Plasma. Plasma Chemistry and Plasma Processing, 2005, 25, 551-564.	2.4	65
102	Spectral study of the electron beam emitted from a 3 kJ plasma focus. Plasma Sources Science and Technology, 2005, 14, 549-560.	3.1	60
103	Diagnostics of nitrogen plasma by trace rare-gas–optical emission spectroscopy. Journal of Applied Physics, 2005, 98, 103303.	2.5	61
104	Plasma focus as a possible x-ray source for radiography. Plasma Sources Science and Technology, 2005, 14, 61-69.	3.1	83
105	Study of the x-ray emission scaling law in a low energy plasma focus. Plasma Sources Science and Technology, 2004, 13, B7-B13.	3.1	19
106	EFFECT OF PLASMA OXIDE SURFACE COATING OF ELECTRODES ON IMPURITY LEVEL AND PLASMA PARAMETERS. International Journal of Modern Physics B, 2004, 18, 1687-1696.	2.0	5
107	Generation of titanium K-radiation in a 1ÂkJ plasma focus. Plasma Devices and Operations, 2004, 12, 305-312.	0.6	5
108	Soft X-ray Imaging using a Neon Filled Plasma Focus X-ray Source. Journal of Fusion Energy, 2004, 23, 49-53.	1.2	44

M ZAKAULLAH

#	Article	IF	CITATIONS
109	Low Energy Plasma Focus as an Intense x-ray Source for Radiography. Plasma Science and Technology, 2004, 6, 2296-2300.	1.5	11
110	Plasma Focus as a High Intensity Flash X-Ray Source for Biological Radiography. Journal of Fusion Energy, 2003, 22, 195-200.	1.2	41
111	X-ray enhancement from a plasma focus by inserting lead at the anode tip. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 319, 181-187.	2.1	24
112	Characterization of Argon Plasma by Use of Optical Emission Spectroscopy and Langmuir Probe Measurements. International Journal of Modern Physics B, 2003, 17, 2749-2759.	2.0	24
113	X-ray emission from a plasma focus with high-Zinserts at the anode tip. Plasma Sources Science and Technology, 2003, 12, 199-204.	3.1	43
114	Study of neutron emission in a low-energy plasma focus with Â-source-assisted breakdown. Plasma Sources Science and Technology, 2003, 12, 443-448.	3.1	54
115	SOFT X-RAY EMISSION IN THE (1.0–1.5 KEV) WINDOW WITH NITROGEN FILLING IN A LOW ENERGY PLASMA FOCUS. Modern Physics Letters B, 2002, 16, 309-318.	1.9	27
116	Characteristics of x-rays from a plasma focus operated with neon gas. Plasma Sources Science and Technology, 2002, 11, 377-382.	3.1	54
117	Scope of plasma focus with argon as a soft X-ray source. IEEE Transactions on Plasma Science, 2002, 30, 2089-2094.	1.3	62
118	Study of molybdenum K-series line radiation emission from a low energy plasma focus. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 302, 23-27.	2.1	13
119	Study of Lateral Spread of Ions Emitted from 2.3 kJ Plasma Focus with Hydrogen and Nitrogen Gases. Journal of Fusion Energy, 2002, 21, 217-220.	1.2	28
120	Improved temperature measurement in a plasma focus by means of a cobalt filter. Plasma Sources Science and Technology, 2001, 10, 295-301.	3.1	7
121	A Simple Technique to Record X-Ray Fluence Anisotropy of a Source. Journal of Fusion Energy, 2001, 20, 69-73.	1.2	4
122	Soft X-Ray Emission Optimization Study with Nitrogen Gas in a 1.2 kJ Plasma Focus. Journal of Fusion Energy, 2001, 20, 113-115.	1.2	19
123	Correlation of plasma electron temperature with neutron emission in a low-energy plasma focus. IEEE Transactions on Plasma Science, 2001, 29, 62-68.	1.3	18
124	Enhanced copper K-alpha radiation from a low-energy plasma focus. Applied Physics Letters, 2001, 78, 877-879.	3.3	51
125	Low-Energy Plasma Focus as a Tailored X-Ray Source. Journal of Fusion Energy, 2000, 19, 143-157.	1.2	61
126	A COST EFFECTIVE X-RAY DETECTOR FOR PLASMA FOCUS DIAGNOSTICS. Modern Physics Letters B, 2000, 14, 563-570.	1.9	1

#	Article	IF	CITATIONS
127	Title is missing!. Plasma Sources Science and Technology, 2000, 9, 592-596.	3.1	52
128	X-ray emission from 30 J Blumlein operated compact diode. Journal of Applied Physics, 2000, 88, 1251-1256.	2.5	11
129	Imaging of fusion reaction zone in plasma focus. Physics of Plasmas, 1999, 6, 3188-3193.	1.9	68
130	Comparative study of ion, x-ray and neutron emission in a low energy plasma focus. Plasma Sources Science and Technology, 1998, 7, 206-218.	3.1	68
131	Correlation Study of Ion, Electron and X-ray Emission from Argon Focus Plasma. Physica Scripta, 1998, 57, 136-141.	2.5	25
132	Influence of magnetic probe presence on current sheath dynamics in plasma focus operation. Fusion Engineering and Design, 1997, 36, 437-446.	1.9	9
133	Effects of anode shape on plasma focus operation with argon. Plasma Sources Science and Technology, 1996, 5, 544-552.	3.1	80
134	Neutron and x-ray emission studies in a low energy plasma focus. Physica Scripta, 1996, 53, 360-363.	2.5	15
135	Comparative study of low energy Mather-type plasma focus devices. Plasma Sources Science and Technology, 1995, 4, 117-124.	3.1	51
136	TEMPORAL CORRELATION OF NEUTRONS, ION BEAM, AND HIGH VOLTAGE PROBE SIGNALS IN A LOW ENERGY PLASMA FOCUS. Modern Physics Letters B, 1994, 08, 393-398.	1.9	1
137	Effect of insulator sleeve contamination on the low energy plasma focus performance. Fusion Engineering and Design, 1994, 23, 359-365.	1.9	14
138	Pressure range broadening for a plasma focus operation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 186, 335-338.	2.1	10
139	A SIMPLE PRESSURIZED SPARKGAP FOR PLASMA FOCUS OPERATION. Modern Physics Letters B, 1993, 07, 835-840.	1.9	11
140	Influence of insulator contamination by copper evaporation on neutron yield in a low-energy plasma focus. Plasma Physics and Controlled Fusion, 1993, 35, 689-692.	2.1	22
141	Sequential focusing in a mather-type plasma focus. Physica Scripta, 1993, 47, 814-816.	2.5	4
142	Effect of insulator sleeve material on neutron emission from a plasma focus. Physica Scripta, 1992, 46, 152-154.	2.5	25
143	ROLE OF ANODE LENGTH IN A MATHER-TYPE PLASMA FOCUS. Modern Physics Letters B, 1992, 06, 593-597.	1.9	38
144	Effect of insulator sleeve length on neutron emission in a plasma focus. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 137, 39-43.	2.1	32

#	Article	IF	CITATIONS
145	A simple facility for the teaching of plasma dynamics and plasma nuclear fusion. American Journal of Physics, 1988, 56, 62-68.	0.7	253