Osborne Fx F Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 2009, 12, 1559-1566.	7.1	1,066
2	Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 2000, 97, 253-266.	1.1	667
3	The Prefrontal Cortex as a Key Target of the Maladaptive Response to Stress. Journal of Neuroscience, 2007, 27, 2781-2787.	1.7	502
4	The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Molecular Psychiatry, 2009, 14, 764-773.	4.1	476
5	Neuropathology of stress. Acta Neuropathologica, 2014, 127, 109-135.	3.9	331
6	Soluble Â-Amyloid1-40 Induces NMDA-Dependent Degradation of Postsynaptic Density-95 at Glutamatergic Synapses. Journal of Neuroscience, 2005, 25, 11061-11070.	1.7	274
7	A trans-dimensional approach to the behavioral aspects of depression. Frontiers in Behavioral Neuroscience, 2009, 3, 1.	1.0	243
8	Morphological Correlates of Corticosteroid-Induced Changes in Prefrontal Cortex-Dependent Behaviors. Journal of Neuroscience, 2005, 25, 7792-7800.	1.7	242
9	A hitchhiker's guide to behavioral analysis in laboratory rodents. Genes, Brain and Behavior, 2006, 5, 5-24.	1.1	234
10	Stress Acts Cumulatively To Precipitate Alzheimer's Disease-Like Tau Pathology and Cognitive Deficits. Journal of Neuroscience, 2011, 31, 7840-7847.	1.7	217
11	Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Molecular Psychiatry, 2005, 10, 790-798.	4.1	190
12	Selective inhibitors of the FK506-binding protein 51 by induced fit. Nature Chemical Biology, 2015, 11, 33-37.	3.9	188
13	Implications of estrogenâ€dependent brain organization for gender differences in hypothalamoâ€pituitaryâ€adrenal regulation. FASEB Journal, 1995, 9, 419-423.	0.2	187
14	Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration. Neural Plasticity, 2016, 2016, 1-15.	1.0	186
15	The stressed prefrontal cortex. Left? Right!. Brain, Behavior, and Immunity, 2008, 22, 630-638.	2.0	165
16	The amyloidogenic potential and behavioral correlates of stress. Molecular Psychiatry, 2009, 14, 95-105.	4.1	154
17	Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: The role of glycogen-synthase-kinase-31². Neuroscience, 2008, 152, 656-669.	1.1	151
18	Specific Configuration of Dendritic Degeneration in Pyramidal Neurons of the Medial Prefrontal Cortex Induced by Differing Corticosteroid Regimens. Cerebral Cortex, 2007, 17, 1998-2006.	1.6	146

#	Article	IF	CITATIONS
19	Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends in Neurosciences, 2012, 35, 742-751.	4.2	134
20	Tau protein is essential for stress-induced brain pathology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3755-63.	3.3	133
21	Corticosteroid receptors and neuroplasticity. Brain Research Reviews, 2008, 57, 561-570.	9.1	127
22	Early-Life Stress Reduces DNA Methylation of the Pomc Gene in Male Mice. Endocrinology, 2014, 155, 1751-1762.	1.4	126
23	Dissociation of the morphological correlates of stress-induced anxiety and fear. European Journal of Neuroscience, 2008, 27, 1503-1516.	1.2	125
24	Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Translational Psychiatry, 2013, 3, e210-e210.	2.4	124
25	Gender differences in ethanol preference and ingestion in rats. The role of the gonadal steroid environment Journal of Clinical Investigation, 1998, 101, 2677-2685.	3.9	115
26	Corticosteroids: Sculptors of the Hippocampal Formation. Reviews in the Neurosciences, 2002, 13, 59-84.	1.4	107
27	Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens. Translational Psychiatry, 2013, 3, e266-e266.	2.4	107
28	Chronic Alcohol Consumption and Withdrawal Do Not Induce Cell Death in the Suprachiasmatic Nucleus, But Lead to Irreversible Depression of Peptide Immunoreactivity and mRNA Levels. Journal of Neuroscience, 1997, 17, 1302-1319.	1.7	101
29	Amyloid-β Induces Caspase-Dependent Loss of PSD-95 and Synaptophysin Through NMDA Receptors. Journal of Alzheimer's Disease, 2010, 22, 541-556.	1.2	100
30	Endogenous κ-opioid systems in opiate withdrawal: role in aversion and accompanying changes in mesolimbic dopamine release. Psychopharmacology, 1994, 115, 121-127.	1.5	98
31	Methylation at the CpG island shore region upregulates <i>Nr3c1</i> promoter activity after early-life stress. Epigenetics, 2015, 10, 247-257.	1.3	98
32	Corticosteroid status influences the volume of the rat cingulate cortex – a magnetic resonance imaging study. Journal of Psychiatric Research, 2005, 39, 451-460.	1.5	97
33	Ligand and subfield specificity of corticoid-induced neuronal loss in the rat hippocampal formation. Neuroscience, 1999, 89, 1079-1087.	1.1	96
34	Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nature Communications, 2015, 6, 10216.	5.8	94
35	Gender specificity in the neural regulation of the response to stress. Molecular Neurobiology, 1998, 16, 63-77.	1.9	89
36	SMAD pathway mediation of BDNF and TGFÎ ² 2 regulation of proliferation and differentiation of hippocampal granule neurons. Development (Cambridge), 2005, 132, 3231-3242.	1.2	89

#	Article	IF	CITATIONS
37	Stress and glucocorticoid footprints in the brain—The path from depression to Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2008, 32, 1161-1173.	2.9	88
38	Long lasting changes in morphine-induced mesolimbic dopamine release after chronic morphine exposure. Synapse, 1993, 14, 243-245.	0.6	87
39	Potential programming of dopaminergic circuits by early life stress. Psychopharmacology, 2011, 214, 107-120.	1.5	85
40	Glucocorticoids trigger Alzheimer diseaseâ€like pathobiochemistry in rat neuronal cells expressing human tau. Journal of Neurochemistry, 2008, 107, 385-397.	2.1	82
41	Stress-Induced Alterations in the Levels of Messenger RNA Coding for Proopiomelanocortin and Prolactin in Rat Pituitary. Neuroendocrinology, 1986, 43, 277-282.	1.2	80
42	DAXX, FLASH, and FAF-1 Modulate Mineralocorticoid and Glucocorticoid Receptor-Mediated Transcription in Hippocampal Cells—Toward a Basis for the Opposite Actions Elicited by Two Nuclear Receptors?. Molecular Pharmacology, 2004, 65, 761-769.	1.0	78
43	Depletion of the neural precursor cell pool by glucocorticoids. Annals of Neurology, 2010, 67, 21-30.	2.8	77
44	Neuronal actions of glucocorticoids: Focus on depression. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 300-309.	1.2	75
45	Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB Journal, 2002, 16, 761-770.	0.2	74
46	Disassembly of Shank and Homer Synaptic Clusters Is Driven by Soluble β-Amyloid1-40 through Divergent NMDAR-Dependent Signalling Pathways. PLoS ONE, 2009, 4, e6011.	1.1	74
47	Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-d-aspartate receptors. Neuroscience, 2003, 121, 123-131.	1.1	72
48	Stress and the Neuroendocrinology of Anxiety Disorders. Current Topics in Behavioral Neurosciences, 2009, 2, 97-118.	0.8	71
49	Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience, 2007, 147, 1022-1033.	1.1	67
50	Chronic Melatonin Treatment Counteracts Glucocorticoid-Induced Dysregulation of the Hypothalamic-Pituitary-Adrenal Axis in the Rat. Neuroendocrinology, 1998, 67, 171-180.	1.2	66
51	Induction of a Hyperanxious State by Antenatal Dexamethasone: A Case for Less Detrimental Natural Corticosteroids. Biological Psychiatry, 2006, 59, 844-852.	0.7	65
52	Local Somatodendritic Translation and Hyperphosphorylation of Tau Protein Triggered by AMPA and NMDA Receptor Stimulation. EBioMedicine, 2017, 20, 120-126.	2.7	64
53	Stress- and corticosteroid-induced modulation of the locomotor response to morphine in rats. Behavioural Brain Research, 1999, 103, 85-93.	1.2	60
54	Developmental expression profiles and distinct regional estrogen responsiveness suggest a novel role for the steroid receptor coactivator SRCâ€1 as a discriminative amplifier of estrogen signaling in the rat brain. FASEB Journal, 2003, 17, 1-12.	0.2	59

#	Article	IF	CITATIONS
55	Mechanisms of initiation and reversal of drug-seeking behavior induced by prenatal exposure to glucocorticoids. Molecular Psychiatry, 2012, 17, 1295-1305.	4.1	59
56	Concomitant Changes in the in vitro and in vivo Release of Opioid Peptides and Luteinizing Hormone-Releasing Hormone from the Hypothalamus following Blockade of Receptors for Corticotropin-Releasing Factor. Neuroendocrinology, 1988, 47, 545-550.	1.2	58
5 7	Mood is a key determinant of cognitive performance in community-dwelling older adults: a cross-sectional analysis. Age, 2013, 35, 1983-1993.	3.0	58
58	Differential and Converging Molecular Mechanisms of Antidepressants' Action in the Hippocampal Dentate Gyrus. Neuropsychopharmacology, 2015, 40, 338-349.	2.8	57
59	Mechanisms Underlying the Protective Potential of α-Tocopherol (Vitamin E) against Haloperidol-associated Neurotoxicity. Neuropsychopharmacology, 2002, 26, 397-407.	2.8	52
60	Acute and chronic stress differentially regulate cyclin-dependent kinase 5 in mouse brain: implications to glucocorticoid actions and major depression. Translational Psychiatry, 2015, 5, e578-e578.	2.4	52
61	Programming effects of antenatal dexamethasone in the developing mesolimbic pathways. Synapse, 2007, 61, 40-49.	0.6	50
62	Corticosteroids: way upstream. Molecular Brain, 2010, 3, 2.	1.3	49
63	Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria. Cerebral Cortex, 2017, 27, bhw057.	1.6	49
64	The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Molecular Psychiatry, 2018, 23, 579-586.	4.1	47
65	The prototypic mineralocorticoid receptor agonist aldosterone influences neurogenesis in the dentate gyrus of the adrenalectomized rat. Brain Research, 2002, 947, 290-293.	1.1	46
66	Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Molecular and Cellular Endocrinology, 2007, 268, 20-29.	1.6	46
67	Evidence that nor-binaltorphimine can function as an antagonist at multiple opioid receptor subtypes. European Journal of Pharmacology, 1994, 264, 157-162.	1.7	44
68	Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. European Journal of Neuroscience, 2012, 36, 3396-3406.	1.2	44
69	Exposure to a novel stimulus reduces anxiety level in adult and aging rats. Physiology and Behavior, 2001, 72, 403-407.	1.0	42
70	Glucocorticoids and neuro- and behavioural development. Seminars in Fetal and Neonatal Medicine, 2009, 14, 130-135.	1.1	39
71	The future is now: early life events preset adult behaviour. Acta Physiologica, 2014, 210, 46-57.	1.8	38
72	Opioid Modulation of LHRH Release in vitro Depends upon Levels of Testosterone in vivo. Neuroendocrinology, 1986, 44, 314-319.	1.2	37

Osborne Fx F Almeida

#	Article	IF	CITATIONS
73	Lithium prevents stress-induced reduction of vascular endothelium growth factor levels. Neuroscience Letters, 2007, 429, 33-38.	1.0	37
74	Effects of altered corticosteroid milieu on rat hippocampal neurochemistry and structure – An in vivo magnetic resonance spectroscopy and imaging study. Journal of Psychiatric Research, 2008, 42, 902-912.	1.5	37
75	Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain, 2012, 135, 2826-2837.	3.7	37
76	Age-related qualitative shift in emotional behaviour: Paradoxical findings after re-exposure of rats in the elevated-plus maze. Behavioural Brain Research, 2005, 162, 135-142.	1.2	36
77	Chronic melatonin treatment and the hypothalamo-pituitary-adrenal axis in the rat: Attenuation of the secretory response to stress and effects on hypothalamic neuropeptide content and release. Biology of the Cell, 1997, 89, 587-596.	0.7	35
78	Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience, 2011, 194, 62-71.	1.1	35
79	Glucocorticoid Regulation of Astrocytic Fate and Function. PLoS ONE, 2011, 6, e22419.	1.1	35
80	CDK5 Is Essential for Soluble Amyloid β-Induced Degradation of GKAP and Remodeling of the Synaptic Actin Cytoskeleton. PLoS ONE, 2011, 6, e23097.	1.1	35
81	Ontogeny of Gender-Specific Responsiveness to Stress and Glucocorticoids in the Rat and its Determination by the Neonatal Gonadal Steroid Environment. Stress, 1999, 3, 41-54.	0.8	33
82	The manifold actions of the protein inhibitor of activated STAT proteins on the transcriptional activity of mineralocorticoid and glucocorticoid receptors in neural cells. Journal of Molecular Endocrinology, 2004, 32, 825-841.	1.1	33
83	Non-receptor-tyrosine Kinases Integrate Fast Glucocorticoid Signaling in Hippocampal Neurons. Journal of Biological Chemistry, 2013, 288, 23725-23739.	1.6	33
84	Day and night: diurnal phase influences the response to chronic mild stress. Frontiers in Behavioral Neuroscience, 2014, 8, 82.	1.0	33
85	Female Hippocampus Vulnerability to Environmental Stress, a Precipitating Factor in Tau Aggregation Pathology. Journal of Alzheimer's Disease, 2014, 43, 763-774.	1.2	33
86	Activational Effects of Gonadal Steroids on Hypothalamoâ€Pituitaryâ€Adrenal Regulation in the Rat Disclosed by Response to Dexamethasone Suppression. Journal of Neuroendocrinology, 1997, 9, 129-134.	1.2	30
87	Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIFâ€⊋ deficient mice. FASEB Journal, 2007, 21, 231-238.	0.2	30
88	Differential Regulation and Function of 5′-Untranslated GR-Exon 1 Transcripts. Molecular Endocrinology, 2011, 25, 1100-1110.	3.7	30
89	Toward a Reliable Distinction Between Patients with Mild Cognitive Impairment and Alzheimer-Type Dementia Versus Major Depression. Biological Psychiatry, 2006, 59, 858-862.	0.7	29
90	Glucose intolerance after chronic stress is related with downregulated PPAR-Î ³ in adipose tissue. Cardiovascular Diabetology, 2016, 15, 114.	2.7	28

#	Article	IF	CITATIONS
91	Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-β1-40 in Hippocampal Cells. Journal of Alzheimer's Disease, 2016, 54, 135-148.	1.2	27
92	Stress and the Etiopathogenesis of Alzheimer's Disease and Depression. Advances in Experimental Medicine and Biology, 2019, 1184, 241-257.	0.8	27
93	Effects of feeding pattern on the pituitary-thyroid axis in the Japanese quail. General and Comparative Endocrinology, 1981, 44, 508-513.	0.8	26
94	Pituitary-adrenal function and hypothalamic beta-endorphin release in vitro following food deprivation. Brain Research Bulletin, 1993, 30, 7-10.	1.4	24
95	Tau Depletion in APP Transgenic Mice Attenuates Task-Related Hyperactivation of the Hippocampus and Differentially Influences Locomotor Activity and Spatial Memory. Frontiers in Neuroscience, 2018, 12, 124.	1.4	24
96	Multiple Factors Influencing the In Vitro Release of [Met5]-Enkephalin from Rat Hypothalamic Slices. Journal of Neurochemistry, 1989, 52, 428-432.	2.1	23
97	Adrenalectomy and Experimental Hypercorticalism Modulate the Basal, Corticotropin-Releasing-Hormone- and Arginine-Vasopressin-Stimulated Release of Hypothalamic Beta-Endorphin. Neuroendocrinology, 1991, 54, 111-117.	1.2	23
98	Mapping cellular gains and losses in the postnatal dentate gyrus: Implications for psychiatric disorders. Experimental Neurology, 2006, 200, 321-331.	2.0	23
99	Differential Regulation of N-Methyl-D-Aspartate Receptor Subunits is An Early Event in the Actions of Soluble Amyloid-β1-40 Oligomers on Hippocampal Neurons. Journal of Alzheimer's Disease, 2016, 51, 197-212.	1.2	22
100	In vivo and in vitro Studies of GABAergic Inhibition of Prolactin Biosynthesis. Neuroendocrinology, 1986, 43, 504-510.	1.2	20
101	Neuroplasticity-related correlates of environmental enrichment combined with physical activity differ between the sexes. European Neuropsychopharmacology, 2019, 29, 1-15.	0.3	20
102	Chronic melatonin treatment and the hypothalamo-pituitary-adrenal axis in the rat: Attenuation of the secretory response to stress and effects on hypothalamic neuropeptide content and release. , 1997, 89, 587.		19
103	Corticosteroid Regulation of Gene Expression and Binding Characteristics of Vasopressin Receptors in the Rat Brain. European Journal of Neuroscience, 1995, 7, 1579-1583.	1.2	17
104	Identification of molecules potentially involved in mediating the in vivo actions of the corticotropin-releasing hormone receptor 1 antagonist, NBI30775 (R121919). Psychopharmacology, 2005, 180, 150-158.	1.5	17
105	Reward components of feeding behavior are preserved during mouse aging. Frontiers in Aging Neuroscience, 2014, 6, 242.	1.7	16
106	Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury. Journal of Clinical Medicine, 2015, 4, 1051-1062.	1.0	15
107	Blunted leptin sensitivity during hedonic overeating can be reinstated by activating galanin 2 receptors (Gal2R) in the lateral hypothalamus. Acta Physiologica, 2020, 228, e13345.	1.8	15
108	Paradoxical LH and prolactin responses to naloxone after chronic treatment with morphine. Journal of Endocrinology, 1986, 108, 181-189.	1.2	13

#	Article	IF	CITATIONS
109	Altered motivation masks appetitive learning potential of obese mice. Frontiers in Behavioral Neuroscience, 2014, 8, 377.	1.0	13
110	Activated PPARÎ ³ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity. Frontiers in Cellular Neuroscience, 2019, 13, 239.	1.8	13
111	Androgen receptor-mediated regulation of adrenocortical activity in the sand rat, Psammomys obesus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 1055-1063.	0.7	11
112	Absence of tolerance to the aversive stimulus properties of ethanol following oral ethanol self-administration. Alcohol, 1996, 13, 175-180.	0.8	10
113	Mismatch between anxiety status and morphometric parameters in the amygdala and bed nucleus of the stria terminalis. Behavioural Brain Research, 2006, 173, 320-325.	1.2	10
114	Melatonin and Malignant Disease. Novartis Foundation Symposium, 1985, 117, 284-310.	1.2	9
115	Pertussis toxin inactivates the presynaptic serotonin autoreceptor in the hippocampus. European Journal of Pharmacology, 1988, 155, 297-299.	1.7	8
116	Pavlovian conditioning and cross-sensitization studies raise challenges to the hypothesis that overeating is an addictive behavior. Translational Psychiatry, 2014, 4, e387-e387.	2.4	8
117	A reappraisal of the goitre-prevention assay: Determination of the thyroid secretion rate in the Japanese quail and the relative potencies of T3 and T4 in preventing goitrogenesis. General and Comparative Endocrinology, 1980, 42, 320-324.	0.8	6
118	The Arctic/Swedish <scp>APP</scp> mutation alters the impact of chronic stress on cognition in mice. European Journal of Neuroscience, 2019, 50, 2773-2785.	1.2	6
119	Brain Expression, Physiological Regulation and Role in Motivation and Associative Learning of Peroxisome Proliferator-activated Receptor γ. Neuroscience, 2021, 479, 91-106.	1.1	5
120	Sexual Differentiation of the Luteinizing Hormone Response of Neonatal Rats to the Narcotic Antagonist Naloxone: Critical Role of Estrogen Receptors1. Biology of Reproduction, 1988, 39, 1009-1012.	1.2	4
121	Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity. Journal of Neuroscience, 2018, 38, 441-451.	1.7	4
122	Antidepressant responsiveness in adulthood is permanently impaired after neonatal destruction of the neurogenic pool. Translational Psychiatry, 2017, 7, e990-e990.	2.4	3
123	Hormones and adult neurogenesis in mammals. Expert Review of Endocrinology and Metabolism, 2007, 2, 261-276.	1.2	2
124	Leveraging Neuroscience to Fight Stigma Around Mental Health. Frontiers in Behavioral Neuroscience, 2021, 15, 812184.	1.0	2
125	Signal Pathways Mediating Antidepressant and Antipsychotic Drugs on Neuronal Cell Survival. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 105-118.	0.6	1

126 Area Under the Curve. , 2010, , 151-151.

#	Article	IF	CITATIONS
127	Cognitive reserve in the healthy elderly: cognitive and psychological factors. ScienceOpen Research, 2015, .	0.6	1
128	Cellular and molecular analysis of stress-induced neurodegeneration – methodological considerations. Handbook of Behavioral Neuroscience, 2005, 15, 729-749.	0.0	0
129	Antipsychotic-Induced Movement Disorders. , 2010, , 115-115.		0
130	Probing the role of estrogen receptor isoforms in neonatal programming of neuroendocrine and behavioral functions. Endocrinology Studies, 2011, 1, 12.	0.2	0
131	O2-12-06: Microtubule-associated protein tau is important for stress-driven depressive pathology and cognitive deficits. , 2015, 11, P204-P204.		0
132	O4â€03â€02: Ablation of Tau Prevents Stressâ€Induced Dendritic and Synaptic Atrophy in Prefrontal Cortex: The Role of Synaptic Mitochondria Alzheimer's and Dementia, 2016, 12, P337.	0.4	0
133	Stress and Opioid Systems. , 2017, , 225-260.		0