Zifeng Lu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1116005/zifeng-lu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88
papers
7,936
citations
94
ext. papers
9,681
ext. citations
89
g-index
8.5
avg, IF
L-index

#	Paper	IF	Citations
88	MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 935-963	6.8	744
87	Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996\(\mathbb{Q}\)010. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9839-9864	6.8	594
86	Historical (17500014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). <i>Geoscientific Model Development</i> , 2018 , 11, 369-408	6.3	585
85	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709	50.4	501
84	Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 6311-6331	6.8	439
83	Aura OMI observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4605-4629	6.8	428
82	All-time releases of mercury to the atmosphere from human activities. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 10485-91	10.3	342
81	Emissions estimation from satellite retrievals: A review of current capability. <i>Atmospheric Environment</i> , 2013 , 77, 1011-1042	5.3	270
80	A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005\(\bar{2}\)014). Journal of Geophysical Research D: Atmospheres, 2016 , 121, 976-996	4.4	249
79	Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5617-5638	6.8	223
78	Total Mercury Released to the Environment by Human Activities. <i>Environmental Science & Environmental </i>	10.3	194
77	Fifteen-year global time series of satellite-derived fine particulate matter. <i>Environmental Science</i> & amp; Technology, 2014 , 48, 11109-18	10.3	193
76	Sources, distribution, and acidity of sulfatellmmonium aerosol in the Arctic in winterlipring. <i>Atmospheric Environment</i> , 2011 , 45, 7301-7318	5.3	170
75	Growth in NO_x emissions from power plants in China: bottom-up estimates and satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4429-4447	6.8	139
74	U.S. NO2 trends (2005 0 013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). <i>Atmospheric Environment</i> , 2015 , 110, 130-143	5.3	128
73	Targeted emission reductions from global super-polluting power plant units. <i>Nature Sustainability</i> , 2018 , 1, 59-68	22.1	125
72	Light absorption properties and radiative effects of primary organic aerosol emissions. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	119

71	Source forensics of black carbon aerosols from China. <i>Environmental Science & Environmental Science &</i>	10.3	119
70	Global chemical composition of ambient fine particulate matter for exposure assessment. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	118
69	Satellite NO retrievals suggest China has exceeded its NO reduction goals from the twelfth Five-Year Plan. <i>Scientific Reports</i> , 2016 , 6, 35912	4.9	108
68	Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations. <i>Environmental Science & Environmental Sc</i>	10.3	100
67	A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996\(\mathbb{Q}\)010. Geophysical Research Letters, 2012, 39, n/a-n/a	4.9	97
66	Global and regional trends in mercury emissions and concentrations, 2010 2 015. <i>Atmospheric Environment</i> , 2019 , 201, 417-427	5.3	90
65	Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012. <i>Environmental Science & Environmental Science & Environmenta</i>	0 1 0 ^{.3}	88
64	Disentangling the impact of the COVID-19 lockdowns on urban NO from natural variability. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089269	4.9	88
63	Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11475-116	4 9 1	81
62	Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals. <i>Atmospheric Environment</i> , 2015 , 116, 1-11	5.3	78
61	The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005\(\textstyle{1}\) 011. Atmospheric Environment, 2013, 81, 102-111	5.3	76
60	Historical releases of mercury to air, land, and water from coal combustion. <i>Science of the Total Environment</i> , 2018 , 615, 131-140	10.2	69
59	Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005\(\overline{\mathbb{Q}} 014. \) Atmospheric Chemistry and Physics, 2015, 15, 10367-10383	6.8	69
58	The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks. <i>Environmental Pollution</i> , 2014 , 185, 149-57	9.3	65
57	Global climate forcing of aerosols embodied in international trade. <i>Nature Geoscience</i> , 2016 , 9, 790-794	18.3	57
56	Enhanced Capabilities of TROPOMI NO: Estimating NO from North American Cities and Power Plants. <i>Environmental Science & Enhanced & En</i>	10.3	52
55	Model evaluation of methods for estimating surface emissions and chemical lifetimes from satellite data. <i>Atmospheric Environment</i> , 2014 , 98, 66-77	5.3	51
54	Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emissions model. <i>Atmospheric Environment</i> , 2016 , 140, 352-363	5.3	50

53	A high-resolution and observationally constrained OMI NO₂ satellite retrieval. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11403-11421	6.8	43
52	A top-down assessment using OMI NO₂ suggests an underestimate in the NO_{<i>x</i>} emissions inventory in Seoul, South Korea, during KORUS-AQ. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1801-1818	6.8	40
51	Response of winter fine particulate matter concentrations to emission and meteorology changes in North China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 11837-11851	6.8	40
50	A global 3-D CTM evaluation of black carbon in the Tibetan Plateau. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 7091-7112	6.8	39
49	Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5415-5428	6.8	39
48	Using gap-filled MAIAC AOD and WRF-Chem to estimate daily PM2.5 concentrations at 1 km resolution in the Eastern United States. <i>Atmospheric Environment</i> , 2019 , 199, 443-452	5.3	38
47	Global emission projections for the transportation sector using dynamic technology modeling. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5709-5733	6.8	37
46	Five hundred years of anthropogenic mercury: spatial and temporal release profiles. <i>Environmental Research Letters</i> , 2019 , 14, 084004	6.2	36
45	Black carbon emissions from biomass and coal in rural China. Atmospheric Environment, 2018 , 176, 158-7	1703	36
44	Constraining black carbon aerosol over Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10281-10308	6.8	33
43	Impacts of control strategies, the Great Recession and weekday variations on NO2 columns above North American cities. <i>Atmospheric Environment</i> , 2016 , 138, 74-86	5.3	33
42	Evaluation of the performance of distributed and centralized biomass technologies in rural China. <i>Renewable Energy</i> , 2018 , 125, 445-455	8.1	30
41	Satellite detection and model verification of NO x emissions from power plants in Northern China. <i>Environmental Research Letters</i> , 2010 , 5, 044007	6.2	30
40	Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. <i>Atmospheric Environment</i> , 2009 , 43, 897-904	5.3	29
39	Construction and characterization of an atmospheric simulation smog chamber. <i>Advances in Atmospheric Sciences</i> , 2007 , 24, 250-258	2.9	29
38	Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 7103-7113	10.3	26
37	Climate impacts of changing aerosol emissions since 1996. <i>Geophysical Research Letters</i> , 2014 , 41, 4711	-447918	26
36	Response of the summertime ground-level ozone trend in the Chicago area to emission controls and temperature changes, 2005\(\textstyle{\textstyle{1}}\) 013. Atmospheric Environment, 2014, 99, 630-640	5.3	25

35	Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	24
34	Greenhouse gas consequences of the China dual credit policy. <i>Nature Communications</i> , 2020 , 11, 5212	17.4	23
33	Natural gas shortages during the "coal-to-gas" transition in China have caused a large redistribution of air pollution in winter 2017. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31018-31025	11.5	23
32	Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. <i>Environmental Pollution</i> , 2018 , 238, 903-9	97	22
31	Radiative forcing due to major aerosol emitting sectors in China and India. <i>Geophysical Research Letters</i> , 2013 , 40, 4409-4414	4.9	22
30	Machine learning model to project the impact of COVID-19 on US motor gasoline demand. <i>Nature Energy</i> , 2020 , 5, 666-673	62.3	20
29	Carbon footprint of global natural gas supplies to China. <i>Nature Communications</i> , 2020 , 11, 824	17.4	18
28	The ozone-climate penalty in the Midwestern U.S Atmospheric Environment, 2017, 170, 130-142	5.3	17
27	Exploiting OMI NO satellite observations to infer fossil-fuel CO emissions from U.S. megacities. <i>Science of the Total Environment</i> , 2019 , 695, 133805	10.2	17
26	Source sector and region contributions to BC and PM_{2.5} in Central Asia. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1683-1705	6.8	17
25	TROPOMI NO in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO Concentrations. <i>Earths</i> Future, 2021 , 9, e2020EF0016	5659	17
24	A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 99-116	6.8	16
23	Historical (1750\(\textit{0}\)014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS) 2017 ,		15
22	Size-resolved global emission inventory of primary particulate matter from energy-related combustion sources. <i>Atmospheric Environment</i> , 2015 , 107, 137-147	5.3	15
21	Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel. <i>SAE International Journal of Fuels and Lubricants</i> , 2016 , 9, 527-545	1.8	15
20	Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. <i>Environmental Pollution</i> , 2018 , 238, 918-930	9.3	14
19	Survival rate of China passenger vehicles: A data-driven approach. <i>Energy Policy</i> , 2019 , 129, 587-597	7.2	13
18	Criteria Air Pollutant and Greenhouse Gases Emissions from U.S. Refineries Allocated to Refinery Products. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 6556-6569	10.3	10

		ZIFENG LU	
17	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6455-6478	6.8	10
16	The compaction of soot particles generated by spark discharge in the propene ozonolysis system. Journal of Aerosol Science, 2008, 39, 897-903	4.3	10
15	Analysis of the origins of black carbon and carbon monoxide transported to Beijing, Tianjin, and Hebei in China. <i>Science of the Total Environment</i> , 2019 , 653, 1364-1376	10.2	10
14	Taking into account greenhouse gas emissions of electric vehicles for transportation de-carbonization. <i>Energy Policy</i> , 2021 , 155, 112353	7.2	10
13	Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions. <i>Atmospheric Environment</i> , 2012 , 51, 165-174	5.3	8
12	Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. <i>Environmental Science & Environmental Science </i>	10.3	8
11	Socioeconomic and atmospheric factors affecting aerosol radiative forcing: Production-based versus consumption-based perspective. <i>Atmospheric Environment</i> , 2019 , 200, 197-207	5.3	8
10	Future private car stock in China: current growth pattern and effects of car sales restriction. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 289-306	3.9	6
9	Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability		6
8	TROPOMI NO2 in the United States: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with PM2.5		6
7	Urban NOx emissions around the world declined faster than anticipated between 2005 and 2019. Environmental Research Letters,	6.2	5
6	China Vehicle Fleet Model: Estimation of Vehicle Stocks, Usage, Emissions, and Energy Use - Model Description, Technical Documentation, and User Guide		4
5	A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in Seoul, South Korea during KORUS-AQ 2018 ,		2
4	A high-resolution and observationally constrained OMI NO₂ satellite retrieval 2017 ,		1
3	Regional Emissions Analysis of Light-Duty Battery Electric Vehicles. <i>Atmosphere</i> , 2021 , 12, 1482	2.7	1

Understanding and improving model representation of aerosol optical properties for a Chinese

Effect of Highly Concentrated Dry (NH4)2SO4 Seed Aerosols on Ozone and Secondary Organic Aerosol Formation in Aromatic Hydrocarbon/NOx Photooxidation Systems. *ACS Symposium Series*,

0.4

haze event measured during KORUS-AQ 2019,

2009, 111-126

1