
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11157299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic Morphine-Induced Changes in Signaling at the A ₃ Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 331-341.	1.3	30
2	Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. Journal of Experimental Medicine, 2018, 215, 1301-1313.	4.2	102
3	Does the word "placebo―evoke a placebo response?. Pain, 2018, 159, 1928-1931.	2.0	13
4	Effects of topical combinations of clonidine and pentoxifylline on capsaicin-induced allodynia and postcapsaicin tourniquet-induced pain in healthy volunteers: a double-blind, randomized, controlled study. Pain, 2016, 157, 2366-2374.	2.0	7
5	Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain, 2015, 156, 2616-2626.	2.0	188
6	Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nature Reviews Neurology, 2014, 10, 326-336.	4.9	156
7	Increased Expression of Cutaneous α1-Adrenoceptors After Chronic Constriction Injury in Rats. Journal of Pain, 2014, 15, 188-196.	0.7	40
8	Nerve resection, crush and re-location relieve complex regional pain syndrome type II: A case report. Pain, 2014, 155, 1168-1173.	2.0	14
9	Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase. Pain, 2013, 154, 2432-2440.	2.0	102
10	Topical Combinations Aimed at Treating Microvascular Dysfunction Reduce Allodynia in Rat Models of CRPS-I and Neuropathic Pain. Journal of Pain, 2013, 14, 66-78.	0.7	16
11	What Is Spontaneous Pain and Who Has It?. Journal of Pain, 2012, 13, 921-929.	0.7	113
12	Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain, 2012, 153, 704-709.	2.0	144
13	Response to "A new definition of neuropathic pain― Pain, 2012, 153, 934-935.	2.0	7
14	Terminal arbor degeneration - a novel lesion produced by the antineoplastic agent paclitaxel. European Journal of Neuroscience, 2011, 33, 1667-1676.	1.2	102
15	Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Experimental Neurology, 2011, 232, 154-161.	2.0	226
16	Imaging studies in Freund's complete adjuvant model of regional polyarthritis, a model suitable for the study of pain mechanisms, in the rat. Arthritis and Rheumatism, 2011, 63, 1573-1581.	6.7	48
17	Repeated Vulvovaginal Fungal Infections Cause Persistent Pain in a Mouse Model of Vulvodynia. Science Translational Medicine, 2011, 3, 101ra91.	5.8	111
18	A Hypothesis for the Cause of Complex Regional Pain Syndrome-Type I (Reflex Sympathetic Dystrophy): Pain Due to Deep-Tissue Microvascular Pathology. Pain Medicine, 2010, 11, 1224-1238.	0.9	123

#	Article	IF	CITATIONS
19	Pathophysiology and Animal Models of Cancer-Related Painful Peripheral Neuropathy. Oncologist, 2010, 15, 9-12.	1.9	56
20	Hypolocomotion, Asymmetrically Directed Behaviors (Licking, Lifting, Flinching, and Shaking) and Dynamic Weight Bearing (Gait) Changes are Not Measures of Neuropathic Pain in Mice. Molecular Pain, 2010, 6, 1744-8069-6-34.	1.0	101
21	Herpes Zoster and Postherpetic Neuralgia: Past, Present and Future. Pain Research and Management, 2009, 14, 275-282.	0.7	43
22	Olesoxime (cholest-4-en-3-one, oxime): Analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain, 2009, 147, 202-209.	2.0	69
23	Novel Therapies for the Control and Prevention of Neuropathic Pain. Neurotherapeutics, 2009, 6, 607-608.	2.1	5
24	Experimental Studies of Potential Analgesics for the Treatment of Chemotherapy-Evoked Painful Peripheral Neuropathies. Pain Medicine, 2008, 9, 505-517.	0.9	51
25	Cutaneous Tactile Allodynia Associated with Microvascular Dysfunction in Muscle. Molecular Pain, 2008, 4, 1744-8069-4-49.	1.0	61
26	Chemotherapy-evoked neuropathic pain: Abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-l-carnitine. Pain, 2008, 135, 262-270.	2.0	150
27	Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain. Pain, 2008, 137, 640-651.	2.0	54
28	C-fiber spontaneous discharge evoked by chronic inflammation is suppressed by a long-term infusion of lidocaine yielding nanogram per milliliter plasma levels. Pain, 2008, 137, 218-228.	2.0	44
29	Objectifying CRPS-I. Pain, 2008, 138, 3-4.	2.0	10
30	Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-l-carnitine: Effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Experimental Neurology, 2008, 210, 229-237.	2.0	137
31	Systemic Glucocorticoid Therapy Reduces Pain and the Number of Endoneurial Tumor Necrosis Factor-Alpha (TNFα)-Positive Mast Cells in Rats With a Painful Peripheral Neuropathy. Journal of Pharmacological Sciences, 2008, 106, 559-565.	1.1	42
32	Persistent Low-frequency Spontaneous Discharge in A-fiber and C-fiber Primary Afferent Neurons during an Inflammatory Pain Condition. Anesthesiology, 2007, 107, 813-821.	1.3	57
33	Peripheral Neuropathy in a Woman With Breast Cancer. Journal of Pain, 2006, 7, 2-10.	0.7	9
34	The Role of Sodium Channels in Chronic Inflammatory and Neuropathic Pain. Journal of Pain, 2006, 7, S1-S29.	0.7	291
35	Paclitaxel- and vincristine-evoked painful peripheral neuropathies: Loss of epidermal innervation and activation of Langerhans cells. Experimental Neurology, 2006, 201, 507-514.	2.0	248
36	Acetyl-l-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neuroscience Letters, 2006, 397, 219-223.	1.0	126

#	Article	IF	CITATIONS
37	Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain, 2006, 122, 245-257.	2.0	447
38	Can We Distinguish between Inflammatory and Neuropathic Pain?. Pain Research and Management, 2006, 11, 11A-15A.	0.7	33
39	Dysregulation of Cellular Calcium Homeostasis in Chemotherapy-Evoked Painful Peripheral Neuropathy. Anesthesia and Analgesia, 2006, 102, 1485-1490.	1.1	152
40	Sympathetic sprouting and changes in nociceptive sensory innervation in the glabrous skin of the rat hind paw following partial peripheral nerve injury. Journal of Comparative Neurology, 2006, 495, 679-690.	0.9	103
41	Characterization of a model of cutaneous inflammatory pain produced by an ultraviolet irradiation-evoked sterile injury in the rat. Journal of Neuroscience Methods, 2005, 148, 161-166.	1.3	20
42	Reply to Dr Rocco. Pain, 2005, 115, 214.	2.0	0
43	A Cytokine-Based Neuroimmunologic Mechanism of Cancer-Related Symptoms. NeuroImmunoModulation, 2004, 11, 279-292.	0.9	266
44	Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain, 2004, 109, 150-161.	2.0	488
45	Abnormal contralateral pain responses from an intradermal injection of phenylephrine in a subset of patients with complex regional pain syndrome (CRPS). Pain, 2004, 111, 378-384.	2.0	33
46	Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-Type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain, 2004, 112, 94-105.	2.0	276
47	Neuropathic pain in the orofacial region: clinical and research challenges. Journal of Orofacial Pain, 2004, 18, 281-6.	1.7	13
48	Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism?. Cancer, 2003, 97, 2919-2925.	2.0	460
49	Models of Neuropathic Pain in the Rat. , 2003, Chapter 5, Unit5.32.		36
50	Advances in Neuropathic Pain. Archives of Neurology, 2003, 60, 1524.	4.9	1,117
51	Models of Neuropathic Pain in the Rat. Current Protocols in Neuroscience, 2003, 22, Unit 9.14.	2.6	40
52	Neuropathic Pain: A Crisis of Definition?. Anesthesia and Analgesia, 2003, 97, 619-620.	1.1	34
53	A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain, 2001, 94, 293-304.	2.0	390
54	Chemotherapy-evoked Painful Peripheral Neuropathy. Pain Medicine, 2001, 2, 8-14.	0.9	98

#	Article	IF	CITATIONS
55	A Neuroimmune Interaction in Painful Peripheral Neuropathy. Clinical Journal of Pain, 2000, 16, S139-S143.	0.8	35
56	Update on the Neurophysiology of Pain Transmission and Modulation. Journal of Pain and Symptom Management, 2000, 19, 2-6.	0.6	225
57	Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy). Pain, 2000, 88, 259-266.	2.0	227
58	Neuropathic pain from an experimental neuritis of the rat sciatic nerve. Pain, 1999, 83, 169-182.	2.0	226
59	Global Cerebral Blood Flow Decreases during Pain. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 141-147.	2.4	67
60	The Human Capsaicin Model of Allodynia and Hyperalgesia. Journal of Pain and Symptom Management, 1998, 16, 10-20.	0.6	87
61	Towards a mechanism-based classification of pain?. Pain, 1998, 77, 227-229.	2.0	461
62	The multiplicity of neuropathic pain sensations. Pain Forum, 1998, 7, 243-245.	1.1	2
63	Analgesic and Cognitive Effects of Intravenous Ketamine-Alfentanil Combinations Versus Either Drug Alone After Intradermal Capsaicin in Normal Subjects. Anesthesia and Analgesia, 1998, 86, 1250-1256.	1.1	32
64	Analgesic and Cognitive Effects of Intravenous Ketamine-Alfentanil Combinations Versus Either Drug Alone After Intradermal Capsaicin in Normal Subjects. Anesthesia and Analgesia, 1998, 86, 1250-1256.	1.1	71
65	Neuropathic Pain: New Insights, New Interventions. Hospital Practice (1995), 1998, 33, 95-114.	0.5	81
66	The Sympathetic Nervous System Contributes to Capsaicin-Evoked Mechanical Allodynia But Not Pinprick Hyperalgesia in Humans. Journal of Neuroscience, 1996, 16, 7331-7335.	1.7	48
67	Capsaicin-evoked Mechanical Allodynia and Hyperalgesia Cross Nerve Territories. Anesthesiology, 1996, 85, 491-496	1.3	101
68	Vanilloid receptor loss is independent of the messenger plasticity that follows systemic resiniferatoxin administration. Brain Research, 1996, 719, 213-218.	1.1	15
69	Intravenous Infusion of the NMDA Antagonist, Ketamine, in Chronic Posttraumatic Pain with Allodynia. Clinical Neuropharmacology, 1995, 18, 360-368.	0.2	147
70	Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain, 1995, 63, 55-64.	2.0	309
71	Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects. Pain, 1995, 63, 163-172.	2.0	165
72	Hypotheses on the pathogenesis of herpes zoster?associated pain. Annals of Neurology, 1994, 35, S38-S41.	2.8	99

#	Article	IF	CITATIONS
73	Magnesium suppresses neuropathic pain responses in rats via a spinal site of action. Brain Research, 1994, 666, 168-172.	1.1	90
74	Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain, 1994, 57, 375-382.	2.0	377
75	An animal model of neuropathic pain: A review. Muscle and Nerve, 1993, 16, 1040-1048.	1.0	152
76	Dextrorphan relieves neuropathic heat-evoked hyperalgesia in the rat. Neuroscience Letters, 1993, 151, 107-110.	1.0	188
77	Does pain damage spinal cord neurons? Transsynaptic degeneration in rat following a surgical incision. Neuroscience Letters, 1993, 162, 78-80.	1.0	39
78	Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain, 1992, 51, 175-194.	2.0	699
79	Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neuroscience Letters, 1992, 138, 225-228.	1.0	432
80	Dorsal root potentials and afferent input to the spinal cord in rats with an experimental peripheral neuropathy. Brain Research, 1992, 584, 181-190.	1.1	84
81	An experimental painful peripheral neuropathy due to nerve constriction. Experimental Neurology, 1992, 118, 204-214.	2.0	116
82	Bilateral and differential changes in spinal mu, delta and kappa opioid binding in rats with a painful, unilateral neuropathy. Pain, 1991, 46, 315-326.	2.0	106
83	Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neuroscience Letters, 1991, 124, 200-203.	1.0	336
84	Tissue donors: painful nerve lesions and reflex sympathetic dystrophy. Pain, 1991, 45, 331.	2.0	0
85	Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation. Brain Research, 1991, 560, 186-192.	1.1	153
86	Quantitative autoradiographic analysis of [1251]-human CGRP binding sites in the dorsal horn of rat following chronic constriction injury or dorsal rhizotomy. Peptides, 1991, 12, 1365-1373.	1.2	20
87	Abnormal skin temperature and abnormal sympathetic vasomotor innervation in an experimental painful peripheral neuropathy. Pain, 1991, 46, 299-313.	2.0	103
88	The role of the sympathetic nervous system in painful peripheral neuropathy. Pain, 1991, 45, 221-223.	2.0	47
89	Thermographic observations on rats with experimental neuropathic pain. Pain, 1991, 45, 61-67.	2.0	67
90	Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides, 1990, 11, 719-728.	1.2	177

#	Article	IF	CITATIONS
91	Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain, 1990, 42, 205-213.	2.0	327
92	Neurochemical and Anatomical Changes in the Dorsal Horn of Rats with an Experimental Painful Peripheral Neuropathy. , 1989, , 463-471.		55
93	Psychophysical observations on patients with neuropathic pain relieved by a sympathetic block. Pain, 1989, 36, 273-288.	2.0	233
94	A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 1988, 33, 87-107.	2.0	4,621
95	Dorsal column postsynaptic neurons in the cat are excited by myelinated nociceptors. Brain Research, 1986, 364, 386-390.	1.1	27
96	Physiology and morphology of the lamina i spinomesencephalic projection. Journal of Comparative Neurology, 1986, 247, 505-515.	0.9	190
97	Lamina I Spinomesencephalic Neurons in the Cat Ascend via the Dorsolateral Funiculi. Somatosensory & Motor Research, 1986, 4, 31-41.	2.2	60
98	Spinal lamina I neurons projecting to the parabrachial area of the cat midbrain. Brain Research, 1985, 336, 195-198.	1.1	114
99	Spinal neurons with branched axons traveling in both the dorsal and dorsolateral funiculi. Experimental Neurology, 1985, 87, 571-577.	2.0	18
100	The morphology of dorsal column postsynaptic spinomedullary neurons in the cat. Journal of Comparative Neurology, 1984, 224, 568-578.	0.9	64
101	Extra- and intracellular recordings from dorsal column postsynaptic spinomedullary neurons in the cat. Experimental Neurology, 1983, 82, 456-477.	2.0	53
102	The Cells of Origin of the Dorsal Column Postsynaptic Projection in the Lumbosacral Enlargements of Cats and Monkeys. Somatosensory & Motor Research, 1983, 1, 131-149.	2.2	70
103	An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord. Journal of Comparative Neurology, 1980, 194, 781-807.	0.9	204
104	Physilogy and morphology of substantia gelatinosa neurons intracellularly stained with horserdish peroxidase. Journal of Comparative Neurology, 1980, 194, 809-827.	0.9	230
105	Physiological properties of stalked cells of the substantia gelatinosa intracellularly stained with horseradish peroxidase. Brain Research, 1979, 164, 285-289.	1.1	62