List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11156162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology, 2010, 48, 1334-1340.	1.8	167
2	Arsenic trioxide inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and caspase-independent apoptosis. American Journal of Physiology - Renal Physiology, 2007, 293, F511-F520.	1.3	79
3	The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncology Reports, 2009, 22, 215-21.	1.2	79
4	Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis. Diabetes, 2016, 65, 2639-2651.	0.3	75
5	Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Letters, 2008, 270, 40-55.	3.2	72
6	Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels. Lung Cancer, 2008, 59, 301-314.	0.9	69
7	Propyl gallate inhibits the growth of HeLa cells via regulating intracellular GSH level. Food and Chemical Toxicology, 2009, 47, 2531-2538.	1.8	59
8	Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity. Endocrinology, 2012, 153, 2677-2688.	1.4	55
9	Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2â^' generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells. Lung Cancer, 2009, 63, 201-209.	0.9	52
10	Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncology Reports, 2008, 20, 689-93.	1.2	52
11	2,4-Dinitrophenol induces G1 phase arrest and apoptosis in human pulmonary adenocarcinoma Calu-6 cells. Toxicology in Vitro, 2008, 22, 659-670.	1.1	49
12	UCP3 Regulates Cardiac Efficiency and Mitochondrial Coupling in High Fat-Fed Mice but Not in Leptin-Deficient Mice. Diabetes, 2012, 61, 3260-3269.	0.3	46
13	Growth inhibition in antimycin A treated-lung cancer Calu-6 cells via inducing a G1 phase arrest and apoptosis. Lung Cancer, 2009, 65, 150-160.	0.9	45
14	Pyrogallol inhibits the growth of lung cancer Calu-6 cells via caspase-dependent apoptosis. Chemico-Biological Interactions, 2009, 177, 107-114.	1.7	43
15	Pyrogallol, ROS generator inhibits As4.1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis. Toxicology, 2007, 235, 130-139.	2.0	42
16	Apoptosis in arsenic trioxideâ€treated Caluâ€6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels. Journal of Cellular Biochemistry, 2008, 104, 862-878.	1.2	33
17	Antimycin A as a mitochondria damage agent induces an S phase arrest of the cell cycle in HeLa cells. Life Sciences, 2008, 83, 346-355.	2.0	31
18	Tiron, a ROS scavenger, protects human lung cancer Calu-6 cells against antimycin A-induced cell death. Oncology Reports, 2009, 21, 253-61.	1.2	29

#	Article	IF	CITATIONS
19	Effects of carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone on the growth inhibition in human pulmonary adenocarcinoma Calu-6 cells. Toxicology, 2009, 265, 101-107.	2.0	27
20	Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthionine sulfoximine. Molecules and Cells, 2008, 26, 158-64.	1.0	25
21	Intracellular CSH levels rather than ROS levels are tightly related to AMA-induced HeLa cell death. Chemico-Biological Interactions, 2008, 171, 67-78.	1.7	23
22	The anti-apoptotic effects of caspase inhibitors on propyl gallate-treated HeLa cells in relation to reactive oxygen species and glutathione levels. Archives of Toxicology, 2009, 83, 825-833.	1.9	22
23	MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level. Human and Experimental Toxicology, 2010, 29, 607-614.	1.1	22
24	Pyrogallol as a glutathione depletor induces apoptosis in HeLa cells. International Journal of Molecular Medicine, 2008, 21, 721-30.	1.8	22
25	Effects of arsenic trioxide on cell death, reactive oxygen species and glutathione levels in different cell types. International Journal of Molecular Medicine, 2010, 25, 121-8.	1.8	21
26	Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle. Oncology Reports, 2010, 23, 1153-8.	1.2	20
27	Intracellular GSH level is a factor in As4.1 juxtaglomerular cell death by arsenic trioxide. Journal of Cellular Biochemistry, 2008, 104, 995-1009.	1.2	19
28	Pyrogallol inhibits the growth of human lung cancer Calu-6 cells via arresting the cell cycle arrest. Toxicology in Vitro, 2008, 22, 1605-1609.	1.1	19
29	Propyl gallate inhibits the growth of calf pulmonary arterial endothelial cells via glutathione depletion. Toxicology in Vitro, 2010, 24, 1183-1189.	1.1	19
30	Suppression of arsenic trioxide-induced apoptosis in HeLa cells by N-acetylcysteine. Molecules and Cells, 2008, 26, 18-25.	1.0	19
31	The effects of N-acetyl cysteine, buthionine sulfoximine, diethyldithiocarbamate or 3-amino-1,2,4-triazole on antimycin A-treated Calu-6 lung cells in relation to cell growth, reactive oxygen species and glutathione. Oncology Reports, 2009, 22, 385-91.	1.2	19
32	Caspase inhibitor decreases apoptosis in pyrogallol-treated lung cancer Calu-6 cells via the prevention of GSH depletion. International Journal of Oncology, 2008, 33, 1099-105.	1.4	18
33	Pyrogallol inhibits the growth of human pulmonary adenocarcinoma A549 cells by arresting cell cycle and triggering apoptosis. Journal of Biochemical and Molecular Toxicology, 2009, 23, 36-42.	1.4	17
34	The effects of MAPK inhibitors on pyrogallol-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. Food and Chemical Toxicology, 2010, 48, 271-276.	1.8	16
35	The effect of MAPK inhibitors on arsenic trioxide-treated Calu-6 lung cells in relation to cell death, ROS and GSH levels. Anticancer Research, 2009, 29, 3837-44.	0.5	15
36	The changes of reactive oxygen species and glutathione by MG132, a proteasome inhibitor affect As4.1 juxtaglomerular cell growth and death. Chemico-Biological Interactions, 2010, 184, 319-327.	1.7	14

#	Article	IF	CITATIONS
37	Attenuation of MG132-induced HeLa cell death by N-acetyl cysteine via reducing reactive oxygen species and preventing glutathione depletion. Anticancer Research, 2010, 30, 2107-12.	0.5	14
38	Pyrogallol-induced As4.1 juxtaglomerular cell death is attenuated by MAPK inhibitors via preventing GSH depletion. Archives of Toxicology, 2010, 84, 631-640.	1.9	13
39	Pyrogallol-induced calf pulmonary arterial endothelial cell death via caspase-dependent apoptosis and CSH depletion. Food and Chemical Toxicology, 2010, 48, 558-563.	1.8	13
40	MG132, a proteasome inhibitor decreased the growth of Calu-6 lung cancer cells via apoptosis and GSH depletion. Toxicology in Vitro, 2010, 24, 1237-1242.	1.1	13
41	2,4â€Ðinitrophenol induces apoptosis in As4.1 juxtaglomerular cells through rapid depletion of GSH. Cell Biology International, 2008, 32, 1536-1545.	1.4	11
42	JNK and p38 inhibitors increase and decrease apoptosis, respectively, in pyrogallol-treated calf pulmonary arterial endothelial cells. International Journal of Molecular Medicine, 2009, 24, 717-22.	1.8	11
43	The effects of MAPK inhibitors on a proteasome inhibitor, MG132-induced HeLa cell death in relation to reactive oxygen species and glutathione. Toxicology Letters, 2010, 192, 134-140.	0.4	11
44	The effects of MAPK inhibitors on antimycin A-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species, and glutathione. Molecular and Cellular Biochemistry, 2010, 333, 211-219.	1.4	10
45	The effects of N-acetyl cysteine on the MG132 proteasome inhibitor-treated lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. International Journal of Molecular Medicine, 2010, 25, 657-62.	1.8	10
46	Intracellular glutathione levels are involved in carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone-induced apoptosis in As4.1 juxtaglomerular cells. International Journal of Molecular Medicine, 2011, 27, 575-81.	1.8	10
47	The effects of buthionine sulfoximine, diethyldithiocarbamate or 3-amino-1,2,4-triazole on propyl gallate-treated HeLa cells in relation to cell growth, reactive oxygen species and glutathione. International Journal of Molecular Medicine, 2009, 24, 261-8.	1.8	9
48	The Attenuation of MG132, a Proteasome Inhibitor, Induced A549 Lung Cancer Cell Death by p38 Inhibitor in ROS-Independent Manner. Oncology Research, 2009, 18, 315-322.	0.6	9
49	Proteasome inhibitor MG132 reduces growth of As4.1 juxtaglomerular cells via caspase-independent apoptosis. Archives of Toxicology, 2010, 84, 689-698.	1.9	9
50	Reactive oxygen species and glutathione level changes by a proteasome inhibitor, MG132, partially affect calf pulmonary arterial endothelial cell death. Drug and Chemical Toxicology, 2010, 33, 403-409.	1.2	7
51	Combinatorial gene construct and non-viral delivery for anti-obesity in diet-induced obese mice. Journal of Controlled Release, 2015, 207, 154-162.	4.8	7
52	The MEK inhibitor PD98059 attenuates growth inhibition and death in gallic acid-treated Calu-6 lung cancer cells by preventing glutathione depletion. Molecular Medicine Reports, 2010, 3, 519-25.	1.1	6
53	Propyl gallate inhibits the growth of endothelial cells, especially calf pulmonary arterial endothelial cells via caspase-independent apoptosis. International Journal of Molecular Medicine, 2010, 25, 937-44.	1.8	6
54	p38 inhibitor intensified cell death in antimycin A-treated As4.1 juxtaglomerular cells via the enhancement of GSH depletion. Anticancer Research, 2009, 29, 4423-31.	0.5	6

#	Article	IF	CITATIONS
55	Tempol inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and apoptosis. Oncology Reports, 2012, 27, 842-8.	1.2	5
56	Treatment with p38 inhibitor partially prevents Calu-6 lung cancer cell death by a proteasome inhibitor, MG132. Cancer Genetics and Cytogenetics, 2010, 199, 81-88.	1.0	4
57	Enhancement of arsenic trioxide-induced apoptosis in HeLa cells by diethyldithiocarbamate or buthionine sulfoximine. International Journal of Oncology, 2008, 33, 205-13.	1.4	3
58	Pyrogallol-induced endothelial cell death is related to GSH depletion rather than ROS level changes. Oncology Reports, 2010, 23, 287-92.	1.2	3
59	Treatment with p38 inhibitor intensifies the death of MG132-treated As4.1 juxtaglomerular cells via the enhancement of GSH depletion. Drug and Chemical Toxicology, 2010, 33, 367-376.	1.2	2
60	Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death. Molecular Medicine Reports, 2009, 2, 307-11.	1.1	0