Evgeny Pavlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11155238/publications.pdf

Version: 2024-02-01

471509 580821 1,579 28 17 25 citations h-index g-index papers 29 29 29 1902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondria modulate ameloblast Ca 2+ signaling. FASEB Journal, 2022, 36, e22169.	0.5	5
2	Cyclophilin D–dependent oligodendrocyte mitochondrial ion leak contributes to neonatal white matter injury. Journal of Clinical Investigation, 2020, 130, 5536-5550.	8.2	13
3	Inorganic polyphosphate as an energy source in tumorigenesis. Oncotarget, 2020, 11, 4613-4624.	1.8	7
4	Editorial note. Journal of Bioenergetics and Biomembranes, 2017, 49, 1-2.	2.3	2
5	Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease. PLoS ONE, 2017, 12, e0182194.	2.5	80
6	P2â€099: Carbonic Anhydrase is a Crucial Target for Prevention of Mitochondrial Pathology in Alzheimer's Models. Alzheimer's and Dementia, 2016, 12, P650.	0.8	0
7	Physical and Functional Association of Lactate Dehydrogenase (LDH) with Skeletal Muscle Mitochondria. Journal of Biological Chemistry, 2013, 288, 25309-25317.	3.4	41
8	Polyester Modification of the Mammalian TRPM8 Channel Protein: Implications for Structure and Function. Cell Reports, 2013, 4, 302-315.	6.4	48
9	Role of polyhydroxybutyrate in mitochondrial calcium uptake. Cell Calcium, 2013, 54, 86-94.	2.4	28
10	Physical and functional association of lactate dehydrogenase with mitochondria in intact and permeabilized skeletal muscle fibers. FASEB Journal, 2013, 27, lb765.	0.5	0
11	Inorganic polyphosphate–an unusual suspect of the mitochondrial permeability transition mystery. Channels, 2012, 6, 463-467.	2.8	37
12	Identification of the Polyhydroxybutyrate Granules in Mammalian Cultured Cells. Chemistry and Biodiversity, 2012, 9, 2597-2604.	2.1	14
13	Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. Journal of General Physiology, 2012, 139, 321-331.	1.9	91
14	Membrane cholesterol content plays a key role in the neurotoxicity of βâ€amyloid: implications for Alzheimer's disease. Aging Cell, 2011, 10, 595-603.	6.7	81
15	Direct Quantification of Inorganic Polyphosphate in Microbial Cells Using 4′-6-Diamidino-2-Phenylindole (DAPI). Environmental Science & Technology, 2011, 45, 7799-7803.	10.0	68
16	Development of an in vitro model of neuronal activity induced excitotoxicity using photoconductive stimulation. Cell Calcium, 2010, 47, 441-448.	2.4	3
17	Inorganic Polyphosphate and Energy Metabolism in Mammalian Cells. Journal of Biological Chemistry, 2010, 285, 9420-9428.	3.4	161
18	Inorganic Polyphosphate Modulates TRPM8 Channels. PLoS ONE, 2009, 4, e5404.	2.5	128

#	Article	IF	CITATIONS
19	High Sensitivity, Quantitative Measurements of Polyphosphate Using a New DAPI-Based Approach. Journal of Fluorescence, 2008, 18, 859-866.	2.5	202
20	Trans-Channel Interactions in Batrachotoxin-Modified Rat Skeletal Muscle Sodium Channels: Kinetic Analysis of Mutual Inhibition between μ-Conotoxin GIIIA Derivatives and Amine Blockers. Biophysical Journal, 2008, 95, 4266-4276.	0.5	3
21	Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions. Biophysical Journal, 2008, 95, 4277-4288.	0.5	3
22	Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18091-18096.	7.1	196
23	A high-conductance mode of a poly-3-hydroxybutyrate/calcium/polyphosphate channel isolated from competentEscherichia colicells. FEBS Letters, 2005, 579, 5187-5192.	2.8	29
24	The Pore, not Cytoplasmic Domains, Underlies Inactivation in a Prokaryotic Sodium Channel. Biophysical Journal, 2005, 89, 232-242.	0.5	90
25	A Large, Voltage-Dependent Channel, Isolated from Mitochondria by Water-Free Chloroform Extraction. Biophysical Journal, 2005, 88, 2614-2625.	0.5	126
26	The mitochondrial channel VDAC has a cation-selective open state. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1710, 96-102.	1.0	68
27	Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. Journal of Bioenergetics and Biomembranes, 2001, 33, 319-331.	2.3	53
28	Bacterial Na Channels: Progenitors, Progeny, or Parallel Evolution?. , 0, , 191-207.		1