Hyeongdo Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11154830/publications.pdf

Version: 2024-02-01

17	1.062	759233	888059
papers	1,062 citations	h-index	g-index
17	17	17	1251
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Letters, 2018, 3, 501-507.	17.4	226
2	High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. ACS Nano, 2016, 10, 10851-10857.	14.6	199
3	Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy, 2018, 214, 131-138.	10.1	171
4	Post ionized defect engineering of the screen-printed Bi 2 Te 2.7 Se 0.3 thick film for high performance flexible thermoelectric generator. Nano Energy, 2017, 31, 258-263.	16.0	101
5	Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy, 2019, 179, 12-18.	8.8	95
6	High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy, 2018, 162, 526-533.	8.8	75
7	Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials. Nano Energy, 2018, 46, 39-44.	16.0	51
8	Enhanced thermoelectric properties of screen-printed Bi _{0.5} Sb _{1.5} Te ₃ and Bi ₂ Te _{2.7} Se _{0.3} thick films using a post annealing process with mechanical pressure. Journal of Materials Chemistry C, 2017, 5, 8559-8565.	5.5	37
9	UVâ€Curable Silver Electrode for Screenâ€Printed Thermoelectric Generator. Advanced Functional Materials, 2019, 29, 1901505.	14.9	25
10	Two-Dimensional Thermal Haptic Module Based on a Flexible Thermoelectric Device. Soft Robotics, 2020, 7, 736-742.	8.0	15
11	High-Performance Monolithic Photovoltaic–Thermoelectric Hybrid Power Generator Using an Exothermic Reactive Interlayer. ACS Applied Energy Materials, 2019, 2, 2381-2386.	5.1	14
12	Dye-Sensitized Solar Cell–Thermoelectric Hybrid Generator Utilizing Bipolar Conduction in a Unified Element. ACS Applied Energy Materials, 2020, 3, 4155-4161.	5.1	14
13	Realization of Highâ€Performance Screenâ€Printed Flexible Thermoelectric Generator by Improving Contact Characteristics. Advanced Materials Interfaces, 2017, 4, 1700870.	3.7	10
14	A Flexible Microâ€Thermoelectric Generator Sticker with Trapezoidalâ€Shaped Legs for Large Temperature Gradient and Highâ€Power Density. Advanced Materials Technologies, 2020, 5, 2000486.	5.8	10
15	Material Optimization for a High Power Thermoelectric Generator in Wearable Applications. Applied Sciences (Switzerland), 2017, 7, 1015.	2.5	9
16	Variable Rigidity Module with a Flexible Thermoelectric Device for Bidirectional Temperature Control. Soft Robotics, 2021, 8, 662-672.	8.0	8
17	Performance Degradation of Flexible Si Nanomembrane Transistors With Al ₂ O ₃ and SiO ₂ Dielectrics Under Mechanical Stress. IEEE Transactions on Electron Devices, 2018, 65, 3069-3072.	3.0	2