Kang Lib Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11154593/publications.pdf Version: 2024-02-01

KANC LIB KIM

#	Article	IF	CITATIONS
1	Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. ACS Applied Materials & Interfaces, 2017, 9, 10128-10135.	8.0	272
2	Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters, 2016, 16, 334-340.	9.1	117
3	Printable and Rewritable Full Block Copolymer Structural Color. Advanced Materials, 2017, 29, 1700084.	21.0	100
4	Highly Reliable Top-Gated Thin-Film Transistor Memory with Semiconducting, Tunneling, Charge-Trapping, and Blocking Layers All of Flexible Polymers. ACS Applied Materials & Interfaces, 2015, 7, 10957-10965.	8.0	65
5	Nonâ€Volatile Ferroelectric Memory with Positionâ€Addressable Polymer Semiconducting Nanowire. Small, 2014, 10, 1976-1984.	10.0	54
6	Flexible Nonvolatile Transistor Memory with Solutionâ€Processed Transition Metal Dichalcogenides. Small, 2017, 13, 1603971.	10.0	49
7	Organic One-Transistor-Type Nonvolatile Memory Gated with Thin Ionic Liquid-Polymer Film for Low Voltage Operation. ACS Applied Materials & Interfaces, 2014, 6, 20179-20187.	8.0	39
8	Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates. ACS Applied Materials & Interfaces, 2016, 8, 33863-33873.	8.0	37
9	Sensing and memorising liquids with polarity-interactive ferroelectric sound. Nature Communications, 2019, 10, 3575.	12.8	25
10	Flexible artificial synesthesia electronics with sound-synchronized electroluminescence. Nano Energy, 2019, 59, 773-783.	16.0	21
11	Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission. Journal of Materials Chemistry C, 2017, 5, 110-117.	5.5	20
12	Shapeâ€Deformable Selfâ€Healing Electroluminescence Displays. Advanced Optical Materials, 2019, 7, 1801283.	7.3	20
13	Epitaxially Grown Ferroelectric PVDFâ€TrFE Film on Shapeâ€Tailored Semiconducting Rubrene Single Crystal. Small, 2018, 14, e1704024.	10.0	19
14	A field-induced hole generation layer for high performance alternating current polymer electroluminescence and its application to extremely flexible devices. Journal of Materials Chemistry C, 2016, 4, 4434-4441.	5.5	17
15	3Dâ€Stacked Vertical Channel Nonvolatile Polymer Memory. Advanced Electronic Materials, 2015, 1, 1400042.	5.1	16
16	Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes. Nanoscale, 2016, 8, 10273-10281.	5.6	13
17	Thin poly(ionic liquid) and poly(vinylidene fluoride) blend films with ferro†and piezoâ€electric polar γâ€crystals. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 795-802. 	2.1	12
18	Complementary Type Ferroelectric Memory Transistor Circuits with P―and Nâ€Channel MoTe ₂ . Advanced Electronic Materials, 2020, 6, 2000479.	5.1	12

#	Article	IF	CITATIONS
19	Multi-level operation of three-dimensionally stacked non-volatile ferroelectric polymer memory with high-performance hole-injection layer. Organic Electronics, 2019, 75, 105394.	2.6	11
20	Thin and surface adhesive ferroelectric poly(vinylidene fluoride) films with β phaseâ€inducing amino modified porous silica nanofillers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2401-2411.	2.1	10
21	Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications. Nanoscale, 2020, 12, 5293-5307.	5.6	6

 $Selfa \in Healing Materials: Shapea \in Deformable Selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa \in Healing Electroluminescence Displays (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa (Advanced Optical) Tj ETOg0 0 0 rg BT / Overlow Control of the selfa (Advanced Optical$