List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1115455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut, 2022, 71, 665-675.	12.1	15
2	CD73+ Epithelial Progenitor Cells That Contribute to Homeostasis and Renewal Are Depleted in Eosinophilic Esophagitis. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1449-1467.	4.5	15
3	Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Frontiers in Cell and Developmental Biology, 2022, 10, 786031.	3.7	2
4	MicroRNA-Based Cancer Mortality Risk Scoring System and hTERT Expression in Early-Stage Oral Squamous Cell Carcinoma. Journal of Oncology, 2021, 2021, 1-11.	1.3	1
5	Rab11â€FIP1 mediates epithelialâ€mesenchymal transition and invasion in esophageal cancer. EMBO Reports, 2021, 22, e48351.	4.5	16
6	Mutant p53 regulates Survivin to foster lung metastasis. Genes and Development, 2021, 35, 528-541.	5.9	19
7	Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nature Genetics, 2021, 53, 881-894.	21.4	44
8	NOTCH3 limits the epithelial–mesenchymal transition and predicts a favorable clinical outcome in esophageal cancer. Cancer Medicine, 2021, 10, 3986-3996.	2.8	7
9	Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Letters, 2021, 509, 39-52.	7.2	31
10	FANCD2 limits acetaldehydeâ€induced genomic instability during DNA replication in esophageal keratinocytes. Molecular Oncology, 2021, 15, 3109-3124.	4.6	9
11	Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell, 2021, 28, 1343-1361.	11.1	42
12	Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. Journal of Clinical Investigation, 2021, 131, .	8.2	49
13	Alcohol Metabolism Enriches Squamous Cell Carcinoma Cancer Stem Cells That Survive Oxidative Stress via Autophagy. Biomolecules, 2021, 11, 1479.	4.0	10
14	3D Organoids: An Untapped Platform for Studying Host–Microbiome Interactions in Esophageal Cancers. Microorganisms, 2021, 9, 2182.	3.6	7
15	Patient-derived organoids as a platform for modeling a patient's response to chemoradiotherapy in esophageal cancer. Scientific Reports, 2021, 11, 21304.	3.3	20
16	Persistent Basal Cell Hyperplasia Is Associated With Clinical and Endoscopic Findings in Patients With Histologically Inactive Eosinophilic Esophagitis. Clinical Gastroenterology and Hepatology, 2020, 18, 1475-1482.e1.	4.4	42
17	Autophagy mitigates ethanol-induced mitochondrial dysfunction and oxidative stress in esophageal keratinocytes. PLoS ONE, 2020, 15, e0239625.	2.5	18
18	Identifying predictors of <scp>HPV</scp> â€related head and neck squamous cell carcinoma progression and survival through patientâ€derived models. International Journal of Cancer, 2020, 147, 3236-3249.	5.1	40

#	Article	IF	CITATIONS
19	Modeling Epithelial Homeostasis and Reactive Epithelial Changes in Human and Murine Threeâ€Đimensional Esophageal Organoids. Current Protocols in Stem Cell Biology, 2020, 52, e106.	3.0	19
20	Outcomes of patients with submucosal (T1b) esophageal adenocarcinoma: a multicenter cohort study. Gastrointestinal Endoscopy, 2020, 92, 31-39.e1.	1.0	33
21	Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology, 2020, 159, 575-590.	1.3	49
22	Generation and Characterization of Patientâ€Derived Head and Neck, Oral, and Esophageal Cancer Organoids. Current Protocols in Stem Cell Biology, 2020, 53, e109.	3.0	45
23	Title is missing!. , 2020, 15, e0239625.		0
24	Title is missing!. , 2020, 15, e0239625.		0
25	Title is missing!. , 2020, 15, e0239625.		0
26	Title is missing!. , 2020, 15, e0239625.		0
27	Epithelial-stromal crosstalk and fibrosis in eosinophilic esophagitis. Journal of Gastroenterology, 2019, 54, 10-18.	5.1	39
28	Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-α. Journal of Allergy and Clinical Immunology, 2019, 144, 171-182.	2.9	41
29	Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway. Protein and Cell, 2019, 10, 485-495.	11.0	4
30	Role of Infectious Agents on Development of Esophageal Carcinomas. Current Cancer Research, 2019, , 39-65.	0.2	0
31	Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development (Cambridge), 2019, 146, .	2.5	19
32	Three-Dimensional Organoids Reveal Therapy Resistance of Esophageal and Oropharyngeal Squamous Cell Carcinoma Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 73-91.	4.5	102
33	Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. Journal of Clinical Investigation, 2019, 129, 3224-3235.	8.2	57
34	Flow based single cell analysis of the immune landscape distinguishes Barrett's esophagus from adjacent normal tissue. Oncotarget, 2019, 10, 3592-3604.	1.8	7
35	Esophageal 3D organoids of <i>MPV17-/-</i> mouse model of mitochondrial DNA depletion show epithelial cell plasticity and telomere attrition. Oncotarget, 2019, 10, 6245-6259.	1.8	5
36	The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive EpithelialAChanges. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 333-352.	4.5	72

#	Article	IF	CITATIONS
37	Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 461-478.	4.5	48
38	Targeting JARID1B's demethylase activity blocks a subset of its functions in oral cancer. Oncotarget, 2018, 9, 8985-8998.	1.8	6
39	hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction. PLoS ONE, 2018, 13, e0206897.	2.5	12
40	Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut, 2017, 66, 1197-1207.	12.1	43
41	Barriers to generating PDX models of HPVâ€related head and neck cancer. Laryngoscope, 2017, 127, 2777-2783.	2.0	33
42	Fibroblast growth factor-2–mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma. Carcinogenesis, 2017, 38, 1073-1083.	2.8	64
43	A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. Journal of Pathology, 2017, 243, 481-495.	4.5	9
44	Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nature Communications, 2017, 8, 1758.	12.8	155
45	Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast. Cell Cycle, 2017, 16, 45-58.	2.6	22
46	Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells. Journal of Experimental and Clinical Cancer Research, 2017, 36, 101.	8.6	27
47	Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. Journal of Clinical Investigation, 2017, 127, 2378-2391.	8.2	86
48	Autophagy levels are elevated in barrett's esophagus and promote cell survival from acid and oxidative stress. Molecular Carcinogenesis, 2016, 55, 1526-1541.	2.7	20
49	HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discovery, 2016, 2, 16045.	6.7	32
50	JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Research, 2016, 76, 5538-5549.	0.9	46
51	ATG7 Gene Expression as a Novel Tissue Biomarker in Eosinophilic Esophagitis. American Journal of Gastroenterology, 2016, 111, 151-153.	0.4	11
52	Preferential Secretion of Thymic Stromal Lymphopoietin (TSLP) by Terminally Differentiated Esophageal Epithelial Cells: Relevance to Eosinophilic Esophagitis (EoE). PLoS ONE, 2016, 11, e0150968.	2.5	38
53	ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds. American Journal of Cancer Research, 2016, 6, 781-96.	1.4	12
54	Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium. Scientific Reports, 2015, 5, 14142.	3.3	38

#	Article	IF	CITATIONS
55	Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental Cell Research, 2015, 330, 102-110.	2.6	37
56	Mechanisms of Barrett's oesophagus: Intestinal differentiation, stem cells, and tissue models. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 3-16.	2.4	26
57	PRMT5 Is Required for Lymphomagenesis Triggered by Multiple Oncogenic Drivers. Cancer Discovery, 2015, 5, 288-303.	9.4	127
58	A pivotal role of Krüppel-like factor 5 in regulation of cancer stem-like cells in hepatocellular carcinoma. Cancer Biology and Therapy, 2015, 16, 1453-1461.	3.4	22
59	WNT10A promotes an invasive and self-renewing phenotype in esophageal squamous cell carcinoma. Carcinogenesis, 2015, 36, 598-606.	2.8	59
60	EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition. Cancer Biology and Therapy, 2015, 16, 933-940.	3.4	46
61	Altered Esophageal Histamine Receptor Expression in Eosinophilic Esophagitis (EoE): Implications on Disease Pathogenesis. PLoS ONE, 2015, 10, e0114831.	2.5	23
62	Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia. Oncotarget, 2015, 6, 32980-33005.	1.8	10
63	Novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cells with dihydropyrimidine dehydrogenase overexpression. American Journal of Cancer Research, 2015, 5, 2431-40.	1.4	10
64	Clinical and biological impact of cyclin-dependent kinase subunit 2 in esophageal squamous cell carcinoma. Oncology Reports, 2014, 31, 1986-1992.	2.6	23
65	IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. American Journal of Cancer Research, 2014, 4, 29-41.	1.4	50
66	EGFR Inhibition Promotes an Aggressive Invasion Pattern Mediated by Mesenchymal-like Tumor Cells within Squamous Cell Carcinomas. Molecular Cancer Therapeutics, 2013, 12, 2176-2186.	4.1	23
67	Optical Imaging of Periostin Enables Early Endoscopic Detection and Characterization of Esophageal Cancer in Mice. Gastroenterology, 2013, 144, 294-297.	1.3	28
68	Sox2 Cooperates with Inflammation-Mediated Stat3 Activation in the Malignant Transformation of Foregut Basal Progenitor Cells. Cell Stem Cell, 2013, 12, 304-315.	11.1	164
69	A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion. Cancer Biology and Therapy, 2013, 14, 853-859.	3.4	33
70	Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nature Protocols, 2012, 7, 235-246.	12.0	138
71	Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIFâ€1αâ€mediated mRNA transcription and continuous protein synthesis. FASEB Journal, 2012, 26, 2620-2630.	0.5	44
72	Notch receptor inhibition reveals the importance of cyclin D1 and Wnt signaling in invasive esophageal squamous cell carcinoma. American Journal of Cancer Research, 2012, 2, 459-75.	1.4	20

#	Article	IF	CITATIONS
73	A NOTCH3-Mediated Squamous Cell Differentiation Program Limits Expansion of EMT-Competent Cells That Express the ZEB Transcription Factors. Cancer Research, 2011, 71, 6836-6847.	0.9	99
74	MMP7 and activation of IGF-1R: A new insight into anti-EGFR therapeutic resistance in metastatic colorectal cancer. Cancer Biology and Therapy, 2011, 11, 184-187.	3.4	4
75	Epidermal Growth Factor Receptor and Mutant p53 Expand an Esophageal Cellular Subpopulation Capable of Epithelial-to-Mesenchymal Transition through ZEB Transcription Factors. Cancer Research, 2010, 70, 4174-4184.	0.9	128
76	Hypoxia activates the cyclooxygenase-2–prostaglandin E synthase axis. Carcinogenesis, 2010, 31, 427-434.	2.8	104
77	Insulin-like growth factor-binding protein-3 promotes transforming growth factor-β1-mediated epithelial-to-mesenchymal transition and motility in transformed human esophageal cells. Carcinogenesis, 2010, 31, 1344-1353.	2.8	72
78	NOTCH1 and NOTCH3 Coordinate Esophageal Squamous Differentiation Through a CSL-Dependent Transcriptional Network. Gastroenterology, 2010, 139, 2113-2123.	1.3	107
79	Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis, 2009, 30, 122-130.	2.8	39
80	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	21.4	862
81	A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. Journal of Clinical Investigation, 2008, 118, 3860-9.	8.2	113
82	Cdx1 and c-Myc Foster the Initiation of Transdifferentiation of the Normal Esophageal Squamous Epithelium toward Barrett's Esophagus. PLoS ONE, 2008, 3, e3534.	2.5	99
83	Inducing Cellular Senescence Using Defined Genetic Elements. Methods in Molecular Biology, 2007, 371, 167-178.	0.9	10
84	EGF-mediated regulation of IGFBP-3 determines esophageal epithelial cellular response to IGF-I. American Journal of Physiology - Renal Physiology, 2006, 290, G404-G416.	3.4	29
85	Tumorigenic Conversion of Primary Human Esophageal Epithelial Cells Using Oncogene Combinations in the Absence of Exogenous Ras. Cancer Research, 2006, 66, 10415-10424.	0.9	38
86	Hypoxic microenvironment as a cradle for melanoma development and progression. Cancer Biology and Therapy, 2006, 5, 476-479.	3.4	44
87	Epidermal Growth Factor Receptor Regulates Aberrant Expression of Insulin-Like Growth Factor-Binding Protein 3. Cancer Research, 2004, 64, 7711-7723.	0.9	84
88	Ha-RasG12V induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction. Oncogene, 2004, 23, 6760-6768.	5.9	44
89	Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Molecular Cancer Research, 2003, 1, 729-38.	3.4	147
90	The Krüppel-like transcriptional factors Zf9 and GKLF coactivate the human keratin 4 promoter and physically interact. FEBS Letters, 2000, 473, 95-100.	2.8	64

#	Article	IF	CITATIONS
91	Cellular characterization and successful transfection of serially subcultured normal human esophageal keratinocytes. , 1998, 177, 274-281.		19
92	The targeting of the cyclin D1 oncogene by an Epstein-Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene, 1997, 14, 1185-1190.	5.9	126
93	Human cyclin D1 oncogene and esophageal squamous cell carcinoma. Cancer, 1995, 76, 541-549.	4.1	94
94	Use of live varicella vaccine in childen with acute leukemia Tohoku Journal of Experimental Medicine, 1978, 126, 393-395.	1.2	5