
William J Brunken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1115314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laminin β2 Chain Regulates Cell Cycle Dynamics in the Developing Retina. Frontiers in Cell and Developmental Biology, 2021, 9, 802593.	3.7	0
2	CNS synapses are stabilized transâ€synaptically by laminins and lamininâ€interacting proteins. Journal of Comparative Neurology, 2019, 527, 67-86.	1.6	15
3	Lamininâ€dystroglycan signaling regulates retinal arteriogenesis. FASEB Journal, 2018, 32, 6261-6273.	0.5	7
4	Laminin β2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan. Journal of Neuroscience, 2018, 38, 5996-6010.	3.6	10
5	CNS Neurons Deposit Laminin α5 to Stabilize Synapses. Cell Reports, 2017, 21, 1281-1292.	6.4	45
6	Laminin-Dependent Interaction between Astrocytes and Microglia. American Journal of Pathology, 2017, 187, 2112-2127.	3.8	26
7	Lack of netrin-4 modulates pathologic neovascularization in the eye. Scientific Reports, 2016, 6, 18828.	3.3	20
8	Extracellular Matrix components regulate cellular polarity and tissue structure in the developing and mature Retina. Journal of Ophthalmic and Vision Research, 2015, 10, 329.	1.0	24
9	Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Experimental Eye Research, 2014, 129, 66-73.	2.6	24
10	Enhanced Wound Healing, Kinase and Stem Cell Marker Expression in Diabetic Organ-Cultured Human Corneas Upon MMP-10 and Cathepsin F Gene Silencing. , 2013, 54, 8172.		39
11	Laminins containing the β2 and γ3 chains regulate astrocyte migration and angiogenesis in the retina. Development (Cambridge), 2013, 140, 2050-2060.	2.5	82
12	The γ3 chain of laminin is widely but differentially expressed in murine basement membranes: Expression and functional studies. Matrix Biology, 2012, 31, 120-134.	3.6	29
13	Research beyond Walls: State University of New York (SUNY) Eye Institute. Journal of Ophthalmic and Vision Research, 2012, 7, 94-6.	1.0	2
14	Genetic Deletion of Laminin Isoforms β2 and γ3 Induces a Reduction in Kir4.1 and Aquaporin-4 Expression and Function in the Retina. PLoS ONE, 2011, 6, e16106.	2.5	28
15	Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Molecular Vision, 2011, 17, 2177-90.	1.1	35
16	Defective Formation of the Inner Limiting Membrane in Laminin β2- and γ3-Null Mice Produces Retinal Dysplasia. , 2010, 51, 1773.		60
17	Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Visual Neuroscience, 2007, 24, 549-562.	1.0	37
18	Laminins containing the β2 chain modulate the precise organization of CNS synapses. Molecular and Cellular Neurosciences, 2007, 34, 288-298.	2.2	50

WILLIAM J BRUNKEN

#	Article	IF	CITATIONS
19	Collagen XVII and BPAG1 expression in the retina: Evidence for an anchoring complex in the central nervous system. Journal of Comparative Neurology, 2005, 487, 190-203.	1.6	57
20	Laminin Expression in Adult and Developing Retinae: Evidence of Two Novel CNS Laminins. Journal of Neuroscience, 2000, 20, 6517-6528.	3.6	247
21	Disruption of Laminin β2 Chain Production Causes Alterations in Morphology and Function in the CNS. Journal of Neuroscience, 1999, 19, 9399-9411.	3.6	148
22	5-HT2a receptors in the rabbit retina: Potential presynaptic modulators. Visual Neuroscience, 1999, 16, 221-230.	1.0	38
23	Serotonin receptors modulate rod signals: A neuropharmacological comparison of light- and dark-adapted retinas. Visual Neuroscience, 1998, 15, 891-902.	1.0	13
24	Identification of the cellular source of laminin ?2 in adult and developing vertebrate retinae. , 1997, 389, 655-667.		33
25	A role for 5HT ₃ receptors in visual processing in the mammalian retina. Visual Neuroscience, 1993, 10, 511-522.	1.0	21
26	The effects of serotonin drugs on horizontal and ganglion cells in the rabbit retina. Visual Neuroscience, 1992, 8, 213-218.	1.0	18
27	The effects of serotonin agonists and antagonists on the response properties of complex ganglion cells in the rabbit's retina. Visual Neuroscience, 1988, 1, 181-188.	1.0	17
28	Neuropharmacological analysis of the role of indoleamine-accumulating amacrine cells in the rabbit retina. Visual Neuroscience, 1988, 1, 275-285.	1.0	19